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ABSTRACT

A new presentation of force displacement relationship for the prediction of
structural fluttering is discussed in this paper. This topic is limited to a detailed
discussion of the derivation of the equations of motion for the rigid streamlined
airfoil /flat plate system of three degrees of freedom, which yields expressions for
aerodynamic resultant forces due to a steady air flow. The equations of motion
presented herein are derived from the conventional classical complex presentation
transformed into real matrix equations. This new presentation of the equations of
motion constitutes the foundation for the latest state-of-the-art of predicting
critical wind loads on the basis of model tests in the wind tunnel.

INTRODUCTION

Economic considerations in construction industry and an increased demand for
ergonomic designs gradually led structural engineers into designing lighter and more
slender structural systems. This design tendency, however, was not without
consequencies, The collapse of the Tacoma Narrows Bridge in 1940 in Washington,
USA, gave the first remarkable signal to structural engineers on disastrous effect of
wind-induced vibrations of slender structures.

Real structures which prove to be sensitive to vibrations on account of wind loads
acting within the anticipated design velocity spectrum include cable stayed bridges,
aircraft hangars (e.g. [6]), flat roof panels, temsion girders in suspended roof
structures etc.

The mechanism of wind-induced vibrations of an elastically restrained structure
under wind action can be described through the energy being absorbed from passing
wind flow. A set of differential equations leads to the familiar eigenvalue problem.
Based on its solution, one can predict a critical wind speed which defines the
critical point at which sustained or divergent self exited oscillations start to occur.
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The effect of this type of instability is known as "flutter phenomenon'. The
motion is termed self-exited in the sense that the aerodynamic forces maintaining it
are a function of the structural displacements and their derivatives. The classical
flutter phenomenon analysis found its origin in the study of airwing vibrations of
aircrafts [5). It can be shown [2,3,4] that a streamlined airfoil can be modelled for
both experimental and analytical purposes as a rigid flat plate system.

The objective of this paper is to provide a new presentation of the equations of
motion based on the classical flat plate model of three degrees of frecdom. The
equations of motion in the concept presented here constitute the Lasis for
clectronically monitored determination of aerodynamic forces to be discussed in a
new paper, presently under preparation. Due to the compl-.ity of the subject, a
sclution of the equations of motion which leads to the pred:ction of critical wind
speeds, is beyond the scope of this paper and will be discussed i another paper.

Goverming Differential Fquations

Aerodynaimic Model — The phenomenon of airfoil flutter is best described with
respect tc a classical airfoil model involving three coupled degrees of freedom h, «

and B as illustrated infﬂg_.__l_:

: ; M,

Fig. 1: Elastically Restrained Airfoil with Three Degrees of Freedom

witl. kh = flexural stiffness

k, = torsional stiffness of the wing
ks = torsional stiffness of the tail
c = reference geometrical length (e.g. half — chord length).
v = wind speed
AM & Mﬁ = aerodynamic forces

h,a B = coordinates

Uhandisi Journal Vol. 14 No. 1 1990



TRy RRRRRRERIIEEIINEN___—.———..———

Since it was found that the airfoil subjected to wind action does exhibit a similar
dynamic behaviour as a flat plate, the airfoil model of fig. 1, for structural analysis
purposes, has been substituted with the flat plate model shown in fig. 2 below:

Fig. 2: Elastically Restrained Flat-Plate Model

with M, My = flat plate masses

€, 0, = flat plate moment of inertia
k = elastic stiffness
¢ = reference geometrical length
v = wind speed
uj, Uy, ug = coordinates

Careful inspection of Fig. 2 reveals that the model is elastically restrained on 3
vertical springs. The degrees of freedom of this system therefore still remains, 3,
and as such is analogous to the model shown in fig. 1. The configuration of the
system illustrated in fig. 2 has been chosen for experimental reasons not subject to
discussion in this paper.

Equations of Motion - Equations of motion are derived on the basis of the

Lagrange's principle of conservation of energy. The kinetic energy, E, of the
vibrating flat plate system is given by

S T nn c e,
B =g M, (Ui’ g Ly, i +5 0, (12 4 Lo, (it (1)
Furthermore the potential energy takes the form

U = ék(u;2+ us? 4 ug?), (2)
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whereas the dissipative energy, with d as damping mass, can be written to read :
D = é-d (052 + ua? + ug?) . (3)

Lagrange's equations of motion can be applied to describe the dynm ic equilibtiam
of forces in the form,

dE \ _ )(E-U) N {
_E,. + 2 g, (4)
& dqj daj 04 ‘

whereby q; = generalized coordinates (referriug 1o degrees of liecd. )
Qj = generalized excitation forces.

Making use of the expressions in eq. (1), (2) and (3} and sabstituting these 1o eq.
(4), one is able to write the equations of motion i the compact formn of eg. (5)

below:

MU+D,U4+KU =F, (5
where U relates to the displacement and P to the forie vector.
The crucial elements of eq. (5) are the mass matrix, M,, the damping matrix, D;,
and the stiffness matrix, Ky. The following can be said al.out these matrices:

The mass matrix, My, assumes the form:

¥‘+%: -2 1 0
N VYRR
Ve = (Yo% f( . %a (t)
l+ip(00 + 00
e ';5' X
o | B-5 1P
| |

where the matrix elements Msjj (1 € i, j € 3) are defined by the quantities shown i
fig 2.

The siiffness matrix, Ks, of the system with the el nents Kj; = k&;; (1 € ,; € 3) ws
diagonal in nature:
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(k | 0 | 0]
.._'_...._I_..._
K elo ! 21 @ (7)
| |
- ==y - -
[0 | 0 | k |

and defined by the elastic spring constant, k.

The damping matrix D; is both material and system dependent and its elements
can only be determined experimentally.

Finally, the displacement or response vector, U, of the system takes the form

uy

uz ] (8)

T=
il

whereas, P, the excitation force vector

I:’l
Py - (9)
Py

Yo
|

For analytical reasons alone, it turns out to be convenient if one chooses to re-write
the flat-plate equations of motion (eq. (5)) in terms of classical coordinates used in
the airfoil model of fig.1. This leads to a form of the dynamic response vector:

h
a (10)
il

=r
]

where the coordinates, h, relates to the translational and a, B to rotational response
movements.

The transformation from the rectilinear vertical coordinates U, to the generalized,

“lassical, coordinates I:J.', can be achieved on the basis of the transformation matrix,
T, defined by the relationship,

U= TU, (11)
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where,
U Uy Uy
h|{ O 1 0}
1 1
I = Q —E- 'c- 0 (12)
1 2 1
Bl -¢ ¢

Hence, the equations of motion in terms of classical coordinates, f_I_, are obtained
through an appropriate transformation of eq. (5). The equations of motion written
in terms of generalized coordinates assume the following form,

MU +DU+KU =P (13)
with M, = TTM T
Dy = T'D,T (14)
K = T7K T
Thus the mass matrix, h_-d,, takes the form:
M, +Mh: £ (M, — M) : My
. R EY T Geah e ¥ T e
M= (S =M 186+ (5Ms| | (15)
1+ (M + My) |
____.._|...._..._'__l....__’_
7 Mb |  ©b + (-%) Ms |95+(§)Mb

I I

whereas the stiffness matrix, gs, reads:
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ij 0 ck |

Ke = [0 2%k % (16)

ck c’k ¢k

The reader should note the symmetry of both ﬁ, and _I?(_,. In contrast to , K, the

transformed matrix Ky has become non-diagonal.

The excitation force, P, is defined as

i —A

a1 1"

fe
A 7]

"']r'

Fig 3: Illustration of Generalized Coordinates h, a, §§ for flat-plate modei.

onvention i Matrix Coefficient

The work of Theodorsen [5] has shown that acting air force -}_;_ is a function of the

structural response U. By assuming harmonic oscillations the response takes the
following complex form:

U = go eiu‘ f (18)

for which U, is the amplitude of oscillation and w the frequency of the oscillating
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system.

For the sake of conveniency, the acting air force P is presented in a form containing
dimensionless characters:

P ow i BaW I (19)
Lt 0 : 0
Fo=|0 lupt! o |, (20)
| |
- |
g - i 0 | Lxpctd?

iv g, (20) L represents the profile lenﬁth whereas p the air densit;  In g (!4) the

Jsiplacem=at amplitude vector becomes dimensionless.

(21)

il

“ .
and the complex wind load matrix W s dineasionlos contaning com lea

coefficients:

: ka :kb"%kl :kc
N WS A Tt e
.\f:"..‘ = | My —ék. | !( . |lﬂc—%kc ' (22)
| + %‘h | '
e T R .{.. ] Naph
1
Ne |“b"2‘nn | ne

T'he complex coefficients of the wind load in eq.(22) were derived by T'heodorsen |7
as functions of the reduced frequency w*,
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with W o= -~ (33
whereby
w = eigenfrequency of the structure
¢ = reference geometrical iength
= wind speed.
a4 follows:

ke = 1-i2y O(w¥)

by = g~ iy {1 4 20(u)} = Sy O(w)
¢ g } i ; * '.*

o - UG+ D + g 1)
!

My == g

mp = g--——;—;

1 . 9 . 10 1
e = 1w+ I " NxF - O T O

(2 -7 2-3

)
e 32+ i — i - "z“r—c(“")“““,z—%(“”

1 - (8- {i‘)h (2 -g)
e w*2x? : Qu*?x B wix? Ao - () .

o

[n eq. (24) the following definition apply:

i = |=I" the imaginary unit.
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C(«*)  the Theodorsen function which is defined through the Henkel functions
HEQ) of the second order as:
Hsz )(wt )

= = P i 25
Clw*) ) + 1 B0 («*) + i G(w*) (25)

z
=
b
S
S
I

The real part of Theodorsen function.
G(w*) = The imaginary part of Theodorsen function.

The derivation of excitation force P as functions of the structural response and
their derivatives with respect to time allows the presentation of the excitation force
matrices to be symbolically associated with the system matrices as follows:

+K, U (26)

(=25

MU+DsU+K U = M,U4+D,

-

with M, = wind "mass"

= wind "damping"

=W

E_w = wind "stiffness"

The right side of equation (26) represents the aerodynamic (wind-induced) locce

and woment terms in N/m? and kNm/m?, respectively.

imroducing an mbitrary, dimensional fa tor matrix, I'y, such that

- o - - - s - -~ -~ -
¥ +DU+KU = B[MUT+DI0"+ + K5 0*)
" s
Lovie 0 0
with Fy = | 0 Lpvic? 0 . (28)
| 0 0 l.'.chzc3

where L represents the length of profile and p the air density,

UHA
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leaves the right-hand side of eq. (26) with dimensionless coefficient matrices ﬁ:,

é: and g as well as dimensionless response vectors g*, L}_* and ﬁ‘, eq. (27).

It can be shown that the dimensionless acceleration, velocity and displacement

response vectors assume the form:

[ ch [ h [ h ]
77 7 -~
e S8, =8|, 0 =]|a (29)
c2fy ch
- i BJ
o L J L

Upon introduction of the classical dimensionless parameter «* (reduced frequency),
the dimensionless coefficient matrices of eq. (27), right-hand side, are given by the
following form:

1 0 of [M%, MLy M

M= |0 1 0 [ Mby, My~ M, (A
0 0 1] | Mbs Ml My
o 0 0 11 f):“ ]5:12 ﬁ':la

D= D o 0Dk i DL (31
0 0 | Di: DL f’:sad
M0 0cl (8% wE KE.

K = |0 0 | [KE Kb, KA, (32)
0 0 u-’- KE, Kh, IE:,,_
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The matrix coefficients in eq. (30), (31) and (32) contain a total number of .
elements which can be proved to be real functions of the reduced {requencies, «*,

given in eq. (23).

The 27 real functions are derived from the classical complex functions of
Theodorsen as follows:

1o wind "mass' coefficients assume a special case of constart viues:

My, = -x
ﬁ:u = 0
ﬁzl! - ‘§'
M, = 0
Mis = =F L8

=
.’l'
I
[
Wi

=
q":.‘
]

x
18
M:n = "‘(‘ég +2%!3

‘he wind "damping" and wind "stiffness" coefficients (cjpend on ¢ .
Theodorsen function, C(w*), given in eq. (25).

e wind "dampir..." -oefficients will read
~ 2xF
D:u = - _:,r"
e = e B e 29
~ 1 F F 2
Dy = ""{W"'W*’%“«T*‘F‘??*E%}
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Dl = = {ybr—gor - por } | (33b)

)
€ %
=
1}
=

Yoialadainly i Geisial }
B TR Tl Tl Tl Tl A T
2-F (2-F

Diyy = *|-gF~HF~FF T

(2 -5)G (e-g)G}

: gR. wislips +i@.7 9Q

Ky = {2ty + o - o - 2o

K::n = ‘%g‘

i, = ,{me_g%] (33)
o L F F G G
Kupg = "‘{?m'wv‘m+w+i?]
" 2G G

Koy = = { 2o -os )

B { G G 2F , F )

ST B .k v, Sl b S

- . 1 1 (@-F (2 -HF
By = "‘{1"-'?7‘2:«;"-" T IR
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Conclusions

Based on the information presented in this paper, the following conclusions are set
forth.

Lzt ol Symbols

(®

The explicit force-displacement relationship to predict the fluttering phenomenon
observed on relative light weight, slender structure systems is presented to
inform the engineer of a new analysis tool for assessing critical wind force
effects.

The theoretical model under consideration is based on both theoretical and
experimental evidence obtained from the study of airfoils and an idealized
analogy of a flat-plate system [7,8).

With the exception of isolated cases, most elastically restrained structural
systems under wind action exhibit a flutter phenomenon involving either two
coupled or one degree of freedom. Both of the above response forms constitute
special - ases of the classical theory of coupled three degrees of freedom.

Therefore, on account of item 3, the equations of motion (Eq. (27)) as well as the
aerodynamic coefficients of Eq. (30) - (32), specifically Eq. (33a) through Eq.
(33c), have general validity. The actual development of specific information on
wind load coefficients for structural objects will be discussed in another paper.

The dynamic force displacement relationship, presented in this paper, constitutes
a major improvement in the assessment methodology of wind forces causing
fluttering and thus would seem to be of great interest to the structural engineer
in general,

Notation for dimensionless parameter
Reference geometrical length

Spring constant

profile length

eigenfrequency

~ real part of Theodorsen - function
imaginary part of Theodorsen - function

”v&j, [’*ij' K,,,ij wind load coefficients

U

Displacement vector in classical coordinates h, a, 8
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U Displacement vector in vertical coordinates uj, uz, ug
i Transformation matrix

&., é,, E. System matrices based on ﬁ

M,, Dy, K, System matrices based an U

Fy Dimensional factor matrix

_h?l_., _li., f{_. wind load matrices based on _Il

My, Dy, K. wind load matrices based on U
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