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ABSTRACT  

Variations in coating weight for galvanized steel sheets can result in 

notable differences between batches. Such variations may cause 

various issues, such as diminished corrosion resistance, lower 

mechanical strength, and visual defects, which can ultimately drive up 

costs, lead to customer dissatisfaction, and pose safety risks. Even with 

attempts to manage elements like air knife pressure and line speed, 

coating weight inconsistencies remain challenging. The research 

focuses on developing a predictive mathematical model designed to 

optimize variations in coating weight during Galvalume production. 

The critical parameters influencing coating weight variation were 

identified and analysed using a systematic literature review, primary 

data collection and process observation. The findings reveal that 

substrate thickness, air knife pressure, line speed, bath composition, 

bath temperature, nozzle-to-strip distance and immersion time 

significantly affect coating weight. By applying regression analysis and 

optimization techniques such as Response Surface Methodology (RSM), 

the study provides a comprehensive understanding and practical 

solutions for achieving consistent coating weights. As a result, a model 

that integrates these factors was developed to forecast coating weight, 

and the predictive model can be used by industry practitioners to 

optimize production processes, reduce material wastage and ensure 

high-quality outputs in hot dip galvanization operations. 
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INTRODUCTION 

The characteristics of steel such as strength, 

toughness, ductility, easy manufacture, 

good formability, weldability, availability, 

ferromagnetic properties, recyclability and 

low cost make it widely used in different 

engineering applications. In order to 

utilizing these beneficial characteristics of 

steel, the protection against corrosion is 

usually required. Corrosion protection 

methods employed to protect steel include 

altering the metal by alloying, changing the 

environment by lowering its humidity or 

using inhibitors, controlling 

electrochemical potential by applying 

cathodic and anodic currents and applying 

organic and metallic coatings. The most 

popular steel protection method is metallic 

coatings with a continuous hot dip process. 

https://ajol.org/tjet
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This method involves continuously feeding 

the steel sheet through a bath of molten 

coating metal. The molten coating metal 

can be zinc only or 55% Al – Zn (Coni et 

al., 2009; James & Taifa, 2023).  

Zinc-only coatings generally provide good 

corrosion resistance; however, their 

effectiveness can diminish in aggressive 

environments, such as those containing 

carbonates and chlorides (Elewa et al., 

2019). However, a 55% Al - Zn alloy 

coated steel sheet, also known as 

Galvalume developed with an organic 

composite coating, helps prevent surface 

crack and corrosion. The organic composite 

coatings instinctively form a protective 

film that inhibits the steel's triggered 

corrosion mechanism under severe 

conditions such as acidic rain or the 

presence of dissolved salts (Elewa et al., 

2019). The coating combines the durability 

of aluminium, and galvanic protection of 

zinc, resulting in a product that exhibits 

excellent corrosion resistance in marine 

and industrial environments, high-

temperature oxidation resistance, heat 

reflectivity of the aluminium coatings and a 

pleasant and distinctive appearance. The 

chemical composition of the coating is 55% 

aluminium, 43.5% zinc and 1.5% silicon 

(Coni et al., 2009). 

Among the common problems that can 

arise during the galvanization process, 

impacting the quality and consistency of 

the galvanized coating on steel sheets, is 

inconsistent coating weight, which can 

occur due to fluctuations in temperature, 

immersion time, or line speed as a results 

section of the sheet can be under- or over-

galvanized (Verma et al., 2022). The 

problem of inconsistent coating weight in 

galvanized steel sheets can lead to 

significant batch-to-batch variations in 

order to check compliance with standards. 

The coating weight is usually measured 

after the production process. Also, these 

variations can lead to several problems, 

including compromised corrosion 

resistance, reduced mechanical strength 

and aesthetic defects, which can result in 

increased costs, customer dissatisfaction 

and potential safety hazards. Despite efforts 

to control factors such as air knife pressure 

and line speed, inconsistencies in coating 

weight persist. Therefore, it is essential to 

investigate and understand the production 

process of Galvalume steel sheets in order 

to solve the problem of inconsistency in 

coating weight. The study sought to address 

three major questions, and the first is, what 

factors affect coating weight variation in 

the hot-dip galvanization process? 

Secondly, how can the coating weight 

outcomes be predicted using mathematical 

model? lastly, what are the optimal setting 

for process parameters that minimizes 

coating weight variation in the hot-dip 

galvanization process? 

Production Process of Galvalume Steel 

Sheet 

The manufacturing of Galvalume steel 

sheets, as shown in 

 
Figure 1, involves a continuous hot-dip 

coating process, where molten aluminum-

zinc is uniformly applied to the surface of 

the steel substrate. The steel, with thickness 

ranging between 0.12mm and 0.55mm and 

width up to 1830 mm, is passed through a 

bath of molten Al – Zn at speeds of about 

600 feet per minute in the form of a 

continuous ribbon. 

The process starts with welding the ends of 

sheared steel sheets to create a continuous 

strip. This strip is then straightened using a 

high-performance tension leveller to 

achieve excellent flatness. The steel is 

subsequently cleaned with an alkaline 

solution, rinsed, and dried. The cleaned 
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steel is then conveyed into the heating 

furnace to make it softer and impart 

formability and desired strength. The 

heating furnace operates in a low gas 

atmosphere composed of nitrogen and 

hydrogen to remove any oxide traces from 

the steel surface. A vacuum chamber, 

known as the 'Snout,' is connected to the 

furnace exit and to the molten aluminium-

zinc (Al-Zn) coating bath to prevent re-

oxidation of the heated steel by air. In the 

Al-Zn coating bath, the steel is conveyed 

around a submerged roll, allowing it to 

react with the molten mixture of 55% 

aluminium, 43.5% zinc, and 1.5% silicon. 

The coated steel is then withdrawn 

vertically from the bath. Excess molten Al-

Zn is removed with an air knife (high-

pressure air) to achieve a precisely 

controlled coating thickness. Finally, the 

steel is then cooled to solidify the Al-Zn 

coating on its surface. Proper solidification 

before contact with any other rolls is crucial 

to avoid damage or deformation of the 

coating. After solidification, the coated 

steel sheet undergoes chemical treatments 

tailored to its intended use, including 

phosphate treatment for enhanced 

paintability and a chrome-free special 

treatment for improved corrosion resistance 

(Xiong et al., 2022). 

Effect of Coating Weight Variation 

Paints can be categorised into oil- and 

water-based (Gambi & Taifa, 2023). It is 

important to determine the effect of coating 

weight variation. The thickness of the 

coating is proportional to the coating 

weight. Hence, coating weight should be 

optimized by effectively monitoring the 

coating thickness. The degradation-

resisting ability of galvanized steel sheets is 

a function of the coating thickness. The 

thicker galvanized coatings provide 

enhanced durability. For example, for any 

environmental condition, G90 coating will 

last longer than a G60, where G represent 

galvanized coating when factors such as 

painting, maintenance, and all are equal 

(Elewa et al., 2019). Despite the higher 

coating thickness of galvanized steel to 

provide better protection against corrosion, 

if it exceeds the required standard range, it 

can reduce the formability of the steel 

sheet. Therefore, it is necessary to control 

the coating thickness variation to the 

required standard range to achieve effective 

corrosion resistance and other steel sheet 

application examples in automotive 

applications (Gorain et al., 2012). The AL 

– ZN coating weight/mass can be measured 

in g/m2 or microns, by the following 

methods: measuring stripped off from the 

steel substrate using a measuring gauge, 

weighing before and after galvanizing, 

magnetic thickness gauge and x-ray 

spectrometric method (Tanzania Bureau of 

Standards (TBS), 2017). The knife gap, 

knife gap pressure, and line speed are 

variables that affect the coating weight and 

thickness. Hence, to meet the standard 

requirement, the weight control should be 

applied at the knife strip, which must be 

between the upper and lower limit at any 

point on the strip (Elewa et al., 2019). 

 

 

Figure 1: Hot dip Continuous galvanizing line source  (Xiong et al., 2022) 
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Factors affecting coating weight 

variation  

Achieving precise and uniform coating 

weight (CW) is crucial in hot-dip 

galvanization. Both sides of the galvanized 

strip must receive a coating of specified 

weight, maintaining consistency both 

longitudinally and transversely. However, 

ensuring this consistency poses significant 

challenges due to the complex interactions 

among various factors affecting coating 

weight (Elewa et al., 2019). While primary 

operational variables such as strip speed, 

knife-to-strip distance, and air gas pressure 

are directly controllable, and their effects 

on coating weight are well understood, 

many other influencing factors are beyond 

the control of both the control system and 

the operator, impacting the weight and 

distribution of the zinc coating as it is 

applied to the strip (Deote et al., 2012). 

Sumitomo (2018) has argued that the 

significance of the air knife in influencing 

the quality (beautiful surface appearance 

and uniform coating weight) has raised the 

demand for its enhancement. However, 

challenges such as edge splash and edge 

over coating hinder improvement efforts 

(Takeishi & Morino, 2000). An ordinary air 

knife discharges air flow even to areas with 

no steel strip, so the jets from the top and 

bottom side collide, disturbing the flow 

near the strip edge (Ahn & Chung, 2006). 

This turbulence results in zinc splash and 

operational instability. The introduction of 

edge baffle plates helps mitigate collisions, 

but the narrow clearance introduces 

complications, particularly during abrupt 

bends in the steel strip (So et al., 2011). In 

response to these operational stability 

concerns, the NSblade air knife has been 

developed to effectively address these 

issues and improve overall performance 

during high-speed operations  

Adetunji (2015) has evaluated the effect of 

withdrawal speed on the overall quality of 

hot dip galvanized steel sheets. The results 

showed that linking withdrawal speed to 

steel sheet thickness has been shown to 

improve the quality of galvanized steel 

sheet products concerning their thickness. 

For this study the overall quality steel sheet 

galvanized at 450 ℃  for 1 minute 

immersion time was the best at withdrawal 

speeds of 3m/min, 4m/min and 5m/min for 

gauges 18,22 and 28, respectively (Yadav, 

2021). However, the results obtained 

showed varying quality parameters for 

different thicknesses. 

The research by Deote et al. (2012) 

demonstrates that factors such as line 

speed, jet pressure, nozzle-to-strip distance, 

zinc bath temperature and strip temperature 

consistently appear as critical factors 

affecting coating weight. These variables 

directly impact zinc flow and interaction 

with the steel substrate, ultimately 

determining the final coating thickness. 

Variations in these parameters can lead to 

uneven coating distribution and potential 

performance issues. Deote et al. (2012) 

observed that factors like jet height above 

the bath, bath composition, steel sheet 

thickness and roughness contribute less 

directly to coating weight, and cannot be 

entirely ignored. These uncontrollable 

factors can introduce complexities in 

coating weight control strategies. For 

example, variation in bath composition can 

affect zinc fluidity and surface tension, 

while steel sheet roughness can influence 

zinc adhesion. Including these factors in the 

controlling strategy often requires intricate 

analysis and data integration. 

Optimization and Mathematical model 

to predict coating weight 

Unanticipated outcomes during 

galvanization pose significant financial and 

quality challenges for steel manufacturers. 

However, predicting steel’s mechanical 

properties before or during the process 

offers substantial benefits. This predictive 

capability can provide operators with 

critical insights, allowing them to enhance 

product quality through early adjustments, 

minimize waste by reducing over-coating 

and scrap production, and decrease 
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reprocessing costs by identifying potential 

issues before the final stages. Additionally, 

the ability to forecast steel properties 

enables better process control, optimizes 

resource utilization, and results in superior 

products at a lower cost, benefiting both the 

company and its customers (Garza, 2019). 

Elsaadawy et al. (2007) developed an 

analytical model for predicting coating 

weight in the continuous hot-dip 

galvanizing process, particularly during the 

air knife wiping stage. This model 

enhances prediction accuracy by 

incorporating improved correlations for 

pressure and shear stress distributions 

within the air jet, based on a combined 

approach of experimental measurements 

and computational fluid dynamics (CFD) 

simulations. Compared to existing models, 

the innovative model offers significantly 

more precise predictions of coating weight, 

especially in the critical low Z/d region 

(knife-to-strip distance). Validation against 

industrial coil average coating weight data 

shows excellent agreement, particularly at 

lower coating weights (up to 75 g/m²), with 

a maximum deviation of 8%. However, 

studies have shown that linear models are 

somewhat limited when applied to complex 

situations (Ghoreishi et al., 2007; Marschik 

et al., 2020). 

Design of Experiments (DOE) has been 

used to analyze the factors influencing zinc 

coating thickness in hot-dip galvanizing 

(HDG), focusing on variables such as 

dipping time (the duration the steel is 

immersed in the zinc bath), the nickel 

content in the zinc bath, and the silicon 

content in the steel. The analysis indicates 

that dipping time and nickel concentration 

are the most critical factors for controlling 

coating thickness. Also, results show that a 

zinc bath with 0.05% nickel and a dipping 

time of 3 minutes produced a thinner 

coating, potentially reducing zinc usage 

and costs while accommodating various 

silicon levels. These findings both support 

and differ from previous research, 

suggesting areas for future exploration 

(Verma et al., 2022). 

Wang (2018) conducted a study on factors 

affecting zinc layer thickness; various 

optimization techniques were utilized, 

including Response Surface Methodology 

(RSM), the Taguchi method (Deshpande et 

al., 2021), and Genetic Algorithm (GA). 

RSM developed a robust model to analyze 

the complex interactions between air knife 

parameters and speed, while the Taguchi 

method highlighted air pressure as a crucial 

factor for stability and air knife range as the 

main determinant of average coating 

thickness. By integrating these findings, the 

Genetic Algorithm provided predictions for 

optimal settings to achieve target coating 

thickness. This multi-faceted approach 

enhanced both the precision of the coating 

process and the understanding of variable 

interactions, demonstrating the 

effectiveness of GA in achieving desired 

specifications. 

Al-rubaiey et. al  (2015) did a study on 

protecting steel poles from rusting using 

different coating thickness and soil type 

parameters. Regression analysis was used 

to create a model which explored the 

relationship between coating thickness and 

soil conditions. The findings indicated that 

thicker coatings slowed down rusting up to 

a certain point. However, going too thick 

caused tiny cracks, making the coating 

weaker.  Predicting the thickness of the 

aluminium and zinc coating on steel during 

the galvanization process can be as 

challenging, and without a predictive 

model, operators are left to guess, which 

can lead to the waste of aluminium and zinc 

and result in uneven coating thicknesses 

(Mao et al., 2020). There is a clear need for 

a mathematical model that allows operators 

to make real-time adjustments, consistently 

achieve the desired coating thickness, and 

optimize resource usage for perfect 

galvanization.  

MATERIALS AND METHODS 

Research Design 

The study employed a mixed-methods 

research design, concentrating on data 
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collection and statistical analysis to 

develop a predictive model. The approach 

was selected to quantify the factors 

influencing coating weight variation 

systematically and to construct a 

mathematical predictive model based on 

statistical evidence. 

Data Collection Methods 

Document review 

A document review followed the Preferred 

Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) guidelines. 

The review aimed at identifying key factors 

influencing coating weight variation and 

effective modelling techniques. This 

involved searching academic databases 

such as Google Scholar, ScienceDirect and 

Taylor and Francis Online using a 

comprehensive search string combining 

terms related to hot dip galvanization, 

coating weight variation, predictive 

modelling and process optimization.  The 

search terms were combined using Boolean 

operators (such as AND, OR, NOT) to 

create a comprehensive search string. (Hot-

dip galvanization OR HDG OR Galvalume 

production line) AND (coating weight 

variation) AND (predictive modelling OR 

mathematical modelling) AND (optimal 

settings for process parameters). The 

review included articles published in 

English within the past 10 years (2014-

2024), Focusing on the hot dip 

galvanization process, factors affecting 

coating weight, predictive modelling 

techniques and optimization of process 

parameters. It excluded those studies 

published in languages other than English, 

studies with limited focus on coating 

weight variation and Conference 

proceedings, editorials or opinion pieces. 

Document Analysis and Process 

Observation 

Data collection from the Galvalume 

production line was achieved through 

document analysis and direct observation 

of the production process. This method 

included examining detailed production 

records and observing the process to 

identify factors influencing coating weight 

variation. Additionally, the factors 

highlighted in the systematic literature 

review were thoroughly recorded. 

A total of 60 data sets were collected from 

the metal industry, representing a 

comprehensive sample of the production 

line’s operations. The sample size of 60 

data points was chosen based on several 

important considerations. First, it was 

necessary to ensure sufficient statistical 

power to detect significant relationships 

between variables. Second, the sample 

needed to be representative of the 

production line’s operations over one 

month to provide an accurate reflection of 

typical performance. Lastly, the sample 

size balanced the need for comprehensive 

data with practical constraints related to 

data collection and analysis, ensuring that 

the study could be conducted efficiently 

while yielding meaningful results. 

Data analysis techniques 

Descriptive statistics were first employed 

to summarize the collected data, offering a 

clear overview of key factors and their 

distributions. This included calculating 

measures such as the mean, standard 

deviation, and range for continuous 

variables and frequency distributions for 

categorical variables. Following this, 

multiple regression analysis was conducted 

using Minitab Statistical Software to 

develop a predictive mathematical model 

for coating weight outcomes. This analysis 

aimed to identify the model that provided 

the best predictive accuracy. Once the 

optimal model was established, Response 

Surface Methodology (RSM) was utilized 

to refine the results further. RSM involves 

advanced optimization techniques to 

determine the most effective settings of the 

input variables to achieve the desired 

coating weight response 
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The study was based on several 

assumptions to facilitate the research 

design, data collection and analysis 

method. To start, it was essential to assume 

that the data collected from the Galvalume 

production line was consistent and reliable, 

with minimal discrepancies in the 

production records and process 

observations. Also, the systematic literature 

review was assumed to have 

comprehensively covered all relevant and 

recent studies within the specified inclusion 

criteria, providing a representative 

overview of the factors influencing coating 

weight variation and effective modelling 

techniques.  Finally, the Minitab version 17 

statistical software used for data analysis 

was assumed to be reliable and capable of 

handling the dataset effectively, providing 

accurate outputs for the regression analysis 

and response surface methodology (RSM). 

RESULTS AND DISCUSSION 

Firstly, the study identified the factors 

affecting coating weight variation through 

the document review. The initial search 

identified a total of 53,221 articles across 

different databases and using multiple 

keywords, as suggested by Athuman et al. 

(2024) and Pamba and Taifa (2024) (refer 

to 

Table 1). A subsequent screening process, 

detailed in Figure 2, resulted in 30 articles 

being chosen for final analysis. 

Table 1: Number of studies found in selected digital libraries (databases) after a general term 

search 

S/N Term Search Google 

Scholar 

ScienceDirect Taylor and 

Francis online 

Total 

1 Hot-dip galvanization process 

(HDG) 

1430 247 27 1704 

2 Key factors in Hot-dip 

galvanization 

16700 822 196 17718 

3 Coating weight variation  16400 580 12 16992 

4 Predictive mathematical 

modelling 

2120 206 30 2356 

5 Optimal settings for process 

parameters 

14200 174 77 14451 

 Total 50850 2029 342 53221 

The review identified several key factors 

influencing coating weight variation in the 

Hot dip galvanization process. One of the 

factors is substrate characteristics, which 

includes the thickness, surface roughness, 

and chemical composition (e.g., silicon 

(Si), manganese (Mn)) of the substrate, 

which can significantly impact coating 

weight(Pokorny et al., 2016; Liu et al., 

2024 and Elewa and Afolalu, 2019). Also, 

process parameters such as line speed, bath 

temperature, immersion time, air knife 

pressure, and nozzle-to-strip distance are 

crucial parameters affecting coating weight 

(Guelton, 2017; Shukla et al., 2017; Lekbir, 

2017; Verma, Sharma, & Badar, 2022; 

Romero & Alabazares, Lara, 2014) and 

Bakhtiari, 2014). Furthermore, the review 

highlighted bath chemistry, the zinc bath's 

composition playing a role in coating 

weight control and formation (Bondareva 

et al., 2014; Rose et al., 2021). 

Additionally, it was observed that 

operational factors such as Shift changes 

(day/night) can introduce variations due to 
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potential differences in operator practices 

(Parmar et al., 2022). 

 
Figure 2: PRISMA 2020 flow diagram for systematic reviews.

Predictive Modelling Techniques 

A document review identified various 

techniques for predicting coating weight in 

hot dip galvanization (HDG). These 

techniques include Multiple linear 

regression (MLR), which establishes linear 

relationships between coating weight and 

process parameters (Cheddadi, 2017). 

Also, Verma et al. (2022) and (Oktavina, 

2023) utilized Taguchi Method to optimize 

the hot dip galvanization process. Artificial 

Neural Networks (ANNs) were also 

employed to capture complex non-linear 

relationships (Shukla et al., 2017; 

Reséndiz-Flores et al., 2021; César García, 

2020; and Fiorilla, 2022). Response 

Surface Methodology (RSM) was also used 

to optimize process parameters for 

achieving the desired coating weight. Soft 

computing techniques like fuzzy logic were 

explored in some studies to handle 

uncertainties and improve prediction 

accuracy (Mousavifard et al., 2019). 

Development of a Predictive 

Mathematical Model for Coating Weight 

Descriptive Analysis 

Descriptive statistics were employed to 

summarize the data from the metal 

industry’s Galvalume production line, 

offering a comprehensive overview of key 

factors and their distributions. This 

analysis, conducted using Minitab version 
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17 Statistical Software, is detailed in Table 

2. It includes measures of the mean, 

standard deviation, range, and frequency 

distributions for continuous and categorical 

variables. 

Table 2: Descriptive statistics analysis for the metal industry’s Galvalume production 

line 

Variable Shift N S1 S2 S3 S4 S5 S5 S6 S7 

Coating 

Weight(g/m2) 
Day 30 69.8 1.24 6.77 56 65.75 69 74 87 

Night 30 69.63 1.06 5.82 57 66.75 69 72.25 85 

Substrate 

Thickness 

(mm) 

Day 30 0.2307 0.00849 0.0465 0.175 0.18 0.2245 0.288 0.295 

Night 30 0.2304 0.00873 0.0478 0.172 0.18 0.221 0.29 0.296 

Air Knife 

Pressure (bar) 
Day 30 1.1457 0.0513 0.2811 0.69 0.798 1.3 1.355 1.48 

Night 30 1.0847 0.0528 0.2892 0.71 0.77 1.26 1.35 1.45 

Line Speed 

(MPM) 
Day 30 125.3 2.23 12.19 106 117.5 122 138 150 

Night 30 124.43 1.77 9.7 110 117.5 121 130.5 147 

Bath 

Temperature 

(℃) 

Day 30 617.87 0.425 2.33 614 616 618 620 622 

Night 30 618.03 0.466 2.55 612 617 618 620 622 

Bath 

Composition 

(wt% Al) 

Day 30 55.097 0.0415 0.227 54.77 54.89 55.085 55.31 55.52 

Night 30 55.101 0.0411 0.225 54.78 54.91 55.065 55.31 55.54 

Nozzle to 

Strip distance 

(mm) 

Day 30 141.17 6.26 34.29 79 104.8 149 170.3 190 

Night 30 144.23 5.81 31.8 82 116.5 150 173 189 

Immersion 

Time 

(seconds) 

Day 30 8.927 0.154 0.844 7.63 8.18 8.975 9.775 10 

Night 30 8.81 0.129 0.707 7.79 8.223 8.665 9.435 10 

Notes: S1 = Mean, S2 = Standard Error Mean, S3 = StDev Minimum, S4 = First Quartile (Q1), S5 = 

Median, S6 = Third Quartile (Q3), S7 = Maximum 

 

Multiple regression analysis 

Several techniques can be applied to 

develop a mathematical model predicting 

the coating weight. Examples of such 

techniques include Response Surface 

Methodology (RSM), the Taguchi method 

(Deshpande et al., 2021), and the Genetic 

Algorithm (GA). Likewise, regression 

analysis is one of the recommended 

techniques as it can enable the 

quantification of the association between 

coating parameters such as pressure, 

temperature and spray angle together with 

the metal coating properties (Setiawan & 

Santosa, 2021). Therefore, this research 

deployed the multiple regression model to 

develop the optimized model for coating 

weight variation in Galvalume production.  

The predictive mathematical model for the 

coating weight outcomes in a metal 

industry’s galvalume production line was 

developed using regression analysis using 

Minitab version 17 Statistical Software. 

The response variables were the coating 

weight (g/m2), and the predictors include 

substrate thickness (mm), Air knife 

pressure (bar), line speed (MPM), Bath 

temperature (℃), Bath composition (wt% 

Al), Nozzle to Strip distance (mm), 

immersion time (seconds) and shift 

(Day/Night). 

Evaluating Multiple Regression Models 

By starting with the best subsets, regression 

was created; this included Coating Weight 

versus Substrate Thickness (mm), Air 

Knife Pressure (bar), Line Speed (MPM), 

Bath Temperature (℃), Bath Composition 

(wt% Al), Nozzle to Strip distance (mm), 

Immersion Time (seconds). Error! 

Reference source not found. provides 

alternatives for the selection of the best 
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model. The aim was to determine the model 

that provides a good fit for better predicting 

coating weight outcomes. The last row 

(row number 7) was identified to fit the 

model well. 

Give the value of R-sq (adj) that is 83.3 and 

the value of R-sq (pred) that is 79.5. This 

gives the difference between R-sq (adj) and 

R-sq (pred) of is 3.8, which low, indicating 

a small drop-off. A large drop-off indicates 

overfitting and too many variables in the 

model. The mallow Cp is 8, which is close 

to the number of predictors plus 1, 

indicating a good sign, and the standard 

error is relatively low, suggesting a good fit 

for the data. When looking at Mallow Cp. 

If Mallow Cp is greater than a number of 

predictors, indicating the model might have 

too many predictors, leading to overfitting; 

conversely, the lower Cp, indicating the 

model may be underfitting, suggesting too 

simple and does not capture the underlying 

pattern of data. 

Equations (1) and (2) represent the 

regression model, indicating the dependent 

variable (Y) against the independent 

variables (X1 to X9). 

Table 4 further explains the significance of 

the regression model coefficients. 

𝑌=β0+β1X1+β2X2+β3X3+β4X4+β5X5 

+β6X6+β7X7+β8X8+β9X9+ε (1) 

Where, X1 to X9  = Substrate Thickness 

(mm), Air Knife Pressure (bar), Line Speed 

(MPM), Bath Temperature (℃), Bath 

Composition (wt% Al), Nozzle to Strip 

distance (mm), Immersion Time (seconds), 

Shift Day and Shift Night. 
𝑌=-686 - 31.3X1+0.36X2+0.2120X3+0.368X4 

+9.30X5- 0.0123X6- 0.199X7+0.0 X8 −
 0.050 X9+ε     (2) 

 

Table 3: Response is Coating Weight (g/m2) 

Vars R-

sq 

R-Sq 

(adj) 

R-Sq 

(pred) 

Mallows 

Cp 

S P1 P2 P3 P4 P5 P6 P7 

1 78.4 78.0 76.3 20.5 2.9356     X         

2 77.5 77.1 75.3 23.6 2.9942         X     

3 83.3 82.7 81.1 5.0 2.6011     X   X     

4 81.5 80.9 79.1 11.3 2.7358     X     X   

5 84.6 83.8 81.9 2.3 2.5182 X   X   X     

6 84.3 83.5 81.2 3.4 2.5422   X X   X     

7 85.2 84.1 82.0 2.3 2.4935 X   X X X     

8 84.7 83.6 81.2 4.2 2.5378 X X X   X     

9 85.3 83.9 81.2 4.1 2.5109 X   X X X X   

10 85.2 83.9 81.4 4.3 2.5151 X   X X X   X 

11 85.3 83.6 80.6 6.0 2.5329 X   X X X X X 

12 85.3 83.6 80.2 6.1 2.5341 X X X X X X   

13 85.3 83.3 79.5 8.0 2.5565 X X X X X X X 

Note(s): P1 = Substrate Thickness (mm), P2 = Air Knife Pressure (bar), P3 = Line Speed (MPM), 

P4 = Bath Temperature (℃), P5 = Bath Composition (wt% Al), P6 = Nozzle to Strip 

distance (mm) and P7 = Immersion Time (seconds) 

Table 4: Description of the regression model coefficients 

Predictor Coefficient P-

Value 

VIF 

Variance 

Inflation 

Factor 

Interpretation 
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Substrate 

Thickness (mm) 

-31.3 0.094 6.51 Not statistically significant, negative 

relationship 

High VIF (6.51) suggests some 

multicollinearity but not severe 

Air Knife Pressure 

(bar) 

0.36 0.883 4.18 Not statistically significant, minimal effect 

The VIF (4.18) shows moderate collinearity 

Line Speed (MPM) 0.2120 0.004 5.14 Statistically significant, positive relationship. 

The VIF (5.14) suggests moderate collinearity. 

Bath Temperature 

(℃) 

0.368 0.163 3.51 Not statistically significant, positive 

relationship. 

The VIF (3.51) is low, indicating minimal 

collinearity 

Bath Composition 

(wt% Al) 

9.30 0.070 11.22 Marginally significant, positive effect. 

The high VIF (11.22) indicates a serious 

multicollinearity 

Nozzle to Strip 

distance (mm) 

-0.0123 0.643 6.62 Not statistically significant. 

The VIF (6.62) indicates moderate 

collinearity. 

Immersion Time 

(seconds) 

-0.199 0.784 2.77 Not statistically significant. 

The VIF (2.77) indicates low collinearity. 

Shift (Night) -0.050 0.943 1.08 Not statistically significant, no impact. 

The VIF (1.08) is very low, indicating no 

collinearity. 

Table 5 depicts the model summary, 

providing key statistics indicating the 

regression model's overall fit. The Standard 

Deviation of Residuals (S) is 2.58130, 

reflecting the average deviation of 

observed values from the regression line. 

While a lower value would indicate a better 

fit, this value suggests a moderate level of 

unexplained variability. The R-squared 

(R²) value of 85.30% demonstrates that the 

predictors explain a substantial portion of 

the variance in coating weight, indicating a 

good model fit. The Adjusted R-squared 

(R²(adj)) value of 83.00% accounts for the 

number of predictors, offering a more 

precise measure of model performance. Its 

slightly lower value than R² suggests that 

some predictors may contribute less 

significantly to the model. The Predicted R-

squared (R²(pred)) value of 78.80% shows 

how well the model predicts new data. Its 

proximity to the Adjusted R² suggests the 

model generalizes well to new data. 

Table 5: Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

2.58130 85.30% 83.00% 78.80% 

Also, line speed (MPM) was found to be 

statistically significant, indicating a 

positive relationship with the coating 

weight. Also, bath composition (wt% Al) 

was marginally significant, suggesting a 

positive effect. Other predictors, such as 

substrate thickness, air knife pressure, bath 

temperature, nozzle-to-strip distance, 

immersion time, and shift (night), were not 

statistically significant individually. 

However, they still contribute to the 

model’s accuracy due to potential 

interactions and real-world complexities. 

Therefore, further analysis was conducted 

to determine optimal process parameters 

that minimize coating weight variation, 

considering the combined effect of all 

factors within the developed model. 

Optimal settings for process parameters 

After developing the regression model to 

predict coating weight, the study focused 

on finding the optimal process parameters 
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to minimize variation within the 75 to 100 

g/m² target range. To achieve this, 

Response Surface Methodology (RSM) 

was used. RSM is a statistical technique 

that employs designed experiments to 

optimize outcomes by examining the 

relationships between multiple input 

variables and the desired output. Through 

RSM, the study aimed to identify the 

specific combinations of process 

parameters that achieve the target coating 

weight while accounting for potential 

interactions among the variables. The 

optimal settings for the process parameters 

to achieve the target coating weight are 

shown in 

Table 6. 

Table 6: Optimal setting for the process parameters 

Response 

Coating 

Weight 

(g/m2) 

VARIABLE SETTING 

Substrate 

Thickness 

(mm) 

Air 

Knife 

Pressure 

(bar) 

Line 

Speed 

(MPM) 

Bath 

Temperature 

(℃) 

Bath 

Composition 

(wt% Al) 

Nozzle 

to Strip 

distance 

(mm) 

Immersion 

Time 

(seconds) 

Shift 

(Day/Night) 

75 0.295 1.48 106 612 55.53 129.82 10 D/N 

76 0.296 0.79 150 612 54.77 190 8 D/N 

77 0.296 0.76 150 612 54.77 190 8 D/N 

78 0.295 1.48 106 612 55.53 121.88 10 D/N 

79 0.234 1.09 128 617 55.16 115.8 8 D/N 

80 0.173 0.70 149.7 612.4 55.06 190 8 D/N 

81 0.234 1.09 128 617 55.16 134.5 10 D/N 

82 0.296 0.69 149.9 622 55.54 190 10 D/N 

83 0.295 1.48 106 612 55.53 109.3 10 D/N 

84 0.234 1.09 128 617 55.16 144.7 10 D/N 

85 0.295 1.48 106 612 55.53 104.4 10 D/N 

86 0.294 1.46 106.6 621.8 55.51 79 10 D/N 

87 0.234 1.09 128 617 55.16 168.2 10 D/N 

88 0.234 1.09 128 617 55.16 174.6 10 D/N 

89 0.234 1.09 128 617 55.16 180.6 10 D/N 

90 0.234 1.09 128 617 55.16 186.2 10 D/N 

91 0.234 1.09 128 617 55.18 190 10 D/N 

92 0.234 1.09 142.8 622 54.77 190 10 D/N 

93 0.234 1.09 143.7 622 54.77 190 10 D/N 

94 0.234 1.09 144.5 622 54.77 190 10 D/N 

95 0.234 1.09 145.3 622 54.77 190 10 D/N 

96 0.234 1.09 146.2 622 54.77 190 10 D/N 

97 0.234 1.09 147.0 622 54.77 190 10 D/N 

98 0.234 1.09 147.8 622 54.77 190 10 D/N 

99 0.234 1.09 148.7 622 54.77 190 10 D/N 

100 0.234 1.09 149.5 622 54.77 190 10 D/N 

The optimal settings represent the 

parameter combinations that minimize 

coating weight variation while achieving 

the desired target range. It is important to 

note that these settings are based on the data 

utilized in this study. Further validation 

under varying production conditions is 

recommended to ensure these results' 

robustness. 

CONCLUSION AND 

RECOMMENDATION 

The study aimed to investigate the factors 

influencing coating weight variation in the 

Galvalume production process and to 

develop a predictive model for coating 

weight outcomes. A thorough analysis 

combined a systematic literature review 

with empirical data. The study identified 
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several key factors affecting coating 

weight, including substrate characteristics 

(such as thickness, surface roughness, and 

chemical composition), process parameters 

(like line speed, bath temperature, 

immersion time, air knife pressure, and 

nozzle-to-strip distance), bath chemistry, 

and operational conditions. A regression 

model was developed, highlighting line 

speed and bath composition as significant 

predictors of coating weight. However, the 

model's explanatory power underscores the 

inherent complexity of the process. Using 

the multiple regression model, the study 

determined the optimal process parameters 

to minimize coating weight variation 

within the desired range. These findings lay 

the groundwork for enhancing the 

Galvalume production process and 

improving overall process efficiency. 

Recommendation 

Based on the study’s findings, several 

recommendations are proposed to optimize 

coating weight variation in the Galvalume 

production line. First, the plant should 

implement the developed predictive model 

to control significant parameters 

statistically, ensure consistent coating 

weights, reduce material waste, and 

enhance product quality. Regular 

monitoring and adjusting process 

parameters, in line with the model’s 

recommendations, are crucial to 

maintaining optimal conditions and 

minimizing variations. Additionally, 

investing in training for technical staff on 

the use of the predictive model and the 

importance of maintaining optimal process 

parameters will help ensure effective 

implementation and management. Lastly, 

future research should consider integrating 

advanced techniques such as Artificial 

Neural Networks (ANNs) and fuzzy logic 

to further enhance the model’s predictive 

capabilities, addressing complex 

relationships and uncertainties in the 

production process. 

Implications for practice 

Implementing the developed predictive 

model for the Galvalume production line 

can significantly enhance operational 

efficiency. The production line can achieve 

more consistent coating weights by 

systematically controlling key parameters 

such as line speed, air knife pressure, bath 

temperature, bath composition, nozzle-to-

strip distance, and immersion time. This 

approach reduces material waste and 

improves product quality. Transitioning 

from a trial-and-error method to a data-

driven strategy marks a substantial 

advancement in process optimization. 

Limitations and Future Research 

Despite the valuable insights gained, this 

study recognizes several limitations. The 

analysis was based on a sample size of 60 

data points, which, while adequate for the 

current statistical methods, may not fully 

capture the variability inherent in the 

production process. Future research could 

benefit from larger datasets and the 

consideration of additional uncontrollable 

factors, such as environmental conditions 

and raw material variations. Exploring 

advanced modelling techniques, such as 

Artificial Neural Networks (ANNs) and 

integrating soft computing methods, could 

further enhance the model’s predictive 

accuracy. 

In summary, the study offers a preliminary 

understanding of controlling coating 

weight variation in hot dip galvanization 

processes. The developed predictive model 

is a basic practical tool for optimizing 

production parameters, leading to 

improved operational efficiency and 

product quality. Future research should aim 

to refine these models and investigate new 

methodologies to address the complexities 

of industrial production environments. 
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