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TRANSPORT MATRICES OF FINITE BEAMS RESTING
ON ELASTIC FOUNDATIONS
A SUMMARY BY

GIGER™) M. w. AND SHIRIMA(®) 1, M.

ABSTRACT

A method of derivation of the coefficients of the transport matrix for a finite
element resting on one and two—parameter elastic foundation soils is outlined. The
coefficients are summarized for both the Benoulli-Euler and the Timoshenko beam
model in tabular form, for general reference. In addition, bounds on the parameters
describing beam/soil flexure, beam and soil shear, which govern the validity of the
two—parameter elastic solutions are provided in graphical form.

INTRODUCTION

Through the availability of powerful micro-computers nowadays available to a large
number of design engineers, the application of finite element technique for use in
foundation engineering design is becoming increasingly more feasible. A large
number of authors (1,2,3,4,10], among many, have formulated solutions to this type
of problem. Scott[11] and Selvadurai[12] in their books provide detailed reviews on
various models published during the past. Without exceptions, all - feasible,
numerical solutions on elastic beams resting on elastic foundation soils are based on
some system of linear springs representing the foundation soil in question. The
majority of solutions to problems on elastic foundations are based on the classical
Bernoulli - Euler beam theory wherein the effect of beam shear is neglected. This
type of boam has been modelled as being supported by a soil exhibiting zero shear
resistance or one that exhibits non—gero shear resistance. The most practical and,
thus, the most popular two beam foundation types are generally referred (o as
"'one-parameter elastic foundation" and "two-parameter elastic foundation" both
based on linear elastic spring analogy. Since, under certain conditions, neglecting
bear shear affects were recopnized to lead to significant errors, researchers have
developed solutions to the problem of concern herein based on the Timoshenko
beamn resting on cne or two-p.iameter elastic foundations.
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This paper deals with the transport matrix which in structural engineering has been
subject to treatment already back in the sixties [7,8,9]. Filipkowski[5], in context
with the development of a new version of displacement method, known as exact
finite element method, showed that the transport matrix bears a link to the
force-displacement relationship of a finite element. With this fact in mind the
transport matrix for a finite element of the Timoshenko type, resting on a
two—-parameter elastic foundation, was formulated. It is the objective of this paper
to outline the development of the transport matrix pertaining to a finite
Timoshenko beam element resting on a one or two-parameter elastic spring
foundation, to list the matrix coefficients for the Bernoulli — Euler and Timoshenko
beam models and to indicate bounds of parameters governing the validity of the
two-parameter elastic foundation solution. The development of the force -
displacement relationship for the Timoshenko beam element resting on a two
parameter elastic spring foundation is subject to a detailed presentation in another
paper which is currently under preparation.

Gm&mmmmmmmmmu

The Timoshenko beam theory [6] includes the effect of transverse shear. It is
assumed that (a) lateral deflections are small when compared with the thickness of
the beam, (b) planes normal to the neutral axis remain plane but do not, in
general, remain normal to the neutral axis and (c) stresses transverse to the beam
axis are negligible. Consider Figure | below:
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Fig. 1 Kinematics of Deformation of the Beam Element.

from where it can be seen that the angular bending distortion, ¢, or rotation of the
normal to the neutral axis of an element dx is of the form:

6= -3 (1)
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in which dv/dx stands for the slope of the elastic curve of the beam element at

point x and o represents the additional rotation of the neutral beam axis due to
transverse shear deformation.

If k denotes the modulus of subgrade reaction and k, is a measure of rotational
stiffness of the subgrade then, by making reference to Figure 1, the total potential
energy of the element — force system, can be written:

I(v4) = 4 BI@)dx + §f RGA(v'<)2dx + H kvadx

+ 4f kddx - [ plxvdx - Tv || - M9, '2)

where El = flexural rigidity of the beam

(GA = shear rigidity of the beam

I = moment of inertia of the cross-sectii
A = area of cross-section

| = ¢ement length

» = ccordinate, independent vanable alc » aenti sl bean, axis
MHx) = rotation of the normal to the nestral 4.1
Ax) = sertical displacement of neutral axis, v «)

= [i:st derivative

# = warping constant

vix) = external, contincus load normal to the seutial axis
f(x) = section shear forces in y — direction

M(x) = section bending moments.

The application of the principle of virtual work, from which it follows that
equilibrium of a deformable system is subject to the condtion:

bl(vid) = 0, (3)

where § denotes the first variation, leads to the following set of two simultaneous
differential equations in v and ¢ for beam elements with constant prismatic
rross-sections,

XGAL + kv +0GA R = px)
RGA ¥ + BIES - (RGA +k)p = 0 (4)
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In the absence of geometric boundary conditions, the associated natural boundary
conditions are:

M(0) = EI¢(0) and T(0) = RGA[v*(0) - 4(0)] (5)

By assuming a function f(x) such that

v o= - GBS - (RGA + klix); ¢ = 4E(X) (6)
ax

and by substitution of the expressions in Eq. (6) into Eq. (4), one obtains the
governing differential equation of a Timoshenko beam resting on a two-parameter
elastic foundation:

El ixi -fk|+R A)dﬁ%‘)'ﬁ'ul-{-ﬁﬁ)f(x) = p(x). (7)

with = 1/8Ga, Eq. (6} can be rewritten to read:

gix) = .;t;qﬁ{fr&?\LH + k) [(x);  Hx) = ‘%&ﬁ L)

According to Eq. (5) and (6) the bending moment, M, and the shear force, T, are
given Ly Eq. (9) below: .

M) = B and m(x) = - el 4 i) (9)

A solution to the homogeneous differential equation (7) [p(x) = 0] does exist in the
form of

() = A x) + B&"x) + ol (x) + Do) (10)

where (n) stands for the nth derivative (n 3 0); A, B, C and D are constants of
mtegration and the functions du(x) take the form,

$i(x) = sin(aAx)-sinh(bAx)
$(x) = sin(2Ax)-cosh(bAx)
®3(x) = cos(aAx)-sinh(bAx) (11)
¢i(x) = cos(aAx)-cosh(bAx).
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The coefficients a, b and A are defined:

am= aing; b= coyg; A= (é-f(l+km)]|,‘ (12)

where g is determined from the relationship,

1
¢ = arctan LKEI(14k 1 ) — (k;+kEIn)I] / ‘ (13)
(k 1+kEIp)

By defining ’
k2 = MEI = [kEI(1+kn)'/? L (1)
and making use of TABLE I below, one can readily
TABLE 1. Values of Function ¢w and Its Derivatives For x = 0

m| ¢,(0) [ ¢40) $.7(0) dn” (0)

110 0 2A%ab 0

2| o la 0 -Ma(1-4b?)

3| 0 Aa 0 Ada(i-ab?)

sl | o Jxwe | o
expross the values at x = 7 of he functions given 1n £q. (8) and (9) in m i«
form:

(v(0)] [-2abkap 0 0 Lekynt{a2-b2)kyn] [A)]

$(0) 0 al bA 0 B
1M(0)[=| 2abk, 0 0 {a?bky  [{of ©9
T(0) 0 (aA[k;+(1-4b2)kj)) (bA{k | ~(1-4a?)ky) ) 0 J DJ

By inspection of Eq. (15), it is immediately apparent that the following syst. .. (f
linear equations can be written and solved in two sets of two simultaneous liiaar
equations to obtain the constants of integration (A,B:C,D) in terms of ihe
boundary parameters shown in Fig. 2(a) and 2(b).

-

o BY
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Fig. 2. Boundary Parameters for Beam Element.

Employing Cramer's rule and by making reference to the intial parameters of
Figure 2 (b), the constants of integration turn out to be of the form:

- et v - Lplhit (b
A P20 B3 77) I k- Mi,

kj~(1-4a?)k, . 1 ,
B = 3 ¢‘1+an. (17)

~ ki+(1-4b2)k, , 1 '
C=- 2 ¢l—mTl;

.
D: ml—qvl-weﬁMla

Making use of the constants in Eq. (17), the tabulated functions of TABLE I
below in combination with Eq. (11) and Eq. (10), permits one to write the solution

vector {%(x), §(x), T(x), M(x)}T in matrix form with reference to Eq. (8) and (9):

v(x) Bry Byy By B[ v
T(x) BTV BT(b B'I"I‘ BTI P
M(x) By By¢ Bur Byy M;
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TABLE II. Function ¢u(x) and Its Derivatives For Arbitrary Values of x

[4 rr rry

b bu

& [Nads+bd,) [-A(a2b)§,+2ab2%, | V351 4a 1

A(ap+bdy) [-A%(a2-b2)gy+2abA%y | ASh(1-4a2),-A%a( 14b2)g,
&y | M- +bd,) [-A3(a2-b2)y-2abA%g, [A3b(1-4a?), +A%a(1-4b2),
[0 | M-ady+bay) |-A2(a2-b2)4,~2abA%, |A3b(1-4a2)py+A%a(1-4b2),

@ o — 8
g

To provide an insight into how the elements of the transport matrix are calculated,
the first of Eq. (8) is considered. This results in the first row of the elements in
the matrix, [B(x)], shown in Eq. (18):

"(x) = -Bln[Ad;(x) + Bo,(x) + Coyix) + Do, (x)]
+ (14 k) (A6 (x) + Béslx) + Coylx) + Dé,(x)] (19)
with reference to TABLE II and Eq. (17), one wmiay write
v(x) = EE;?%FJ' T . L fa’-?; ", i] [A’El-(a’-b’)d:, - 2)*Elnabé,
- (l+km)¢.]
+ [—’5&};3—“’)3% + -:,:}rzTi] [A’EIr(a’—-h’)d;, - 2X*Elnab, + (l+k|r;)¢,]

2 [‘%n—)"“’k ks, + —%—}5’1‘] [A’Elaﬂa’—b’)% + 2V'Elnbé, + (1+hff)¢a]

+ [ﬁiﬁ vi- Weﬁ“'] [Jt’Elq(a"—b’)-t.4 + 2)’Elmbé, + (1+km)¢4] (20)
If all terms in Eq. (20) containing v; are summed up and recognition of the fact

that a = sin(p/2), b = cos(p/2) and a2+b? = 1 is taken, B, is found to be of the
form:

2_2
B, = LHBEAY £l 4 4 (21)
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Similarly, all terms containing ¢; are collected together to obtain B/ & Other
elements of the transport matrix are calculated in the same way by considering
each row with the corresponding equations. '

TRANSPORT MATRIX COEFFICIENTS

Transport matrix coefficients are listed in the APPENDIX for both Timoshenko
and Bernaulli - Euler beams resting on one and two—parameter elastic foundations.

TABLE IV contains all elements of the transport matrix for a Timoshenko beam
resting on a two—parameter elastic foundation. For the Bernoulli-Euler beam
resting on a two—parameter elastic foundation, one assumes n = 0 and obtains all
elements of the transport matrix as shown in TABLE V. The one-parameter
transport matrix coefficients subject to condition of ky = 0 are listed in TABLE VI
for the Timoshenko beam element whereas those for the Bernoulli-Euler beam are
tabulated in TABLE VII (note: both 5 and k, are zero). It should be born in mind
that all ¢ = ¢u(x). Also, note that the coefficients A and B used in tables bear no
relationship with the constants of integration in Eq. (17). The coefficients a and b
are defined by Eq. (12) and (13).

PARAMETER RANGE OF APPLICABILITY

For the solution of the homogeneous differential equation for the Timoshenko beam
element resting on a two-parameter elastic foundation to be valid, the following
condition must hold,

ki + kEIp < |4kEI(1+km) (22)

If one defines the dimensionless quantities A, Iy and ['; which represent th-
influence of the first foundation parameter k, second foundation parameter k; and
the effect of transverse beam shear, 5, respectively, where

A 4kl4’ r‘]=k|], and I‘,:I’_?_i_ (23)
Eq. (22) can be rewritten to read:
4(1 4+ M)A > (T + TaAd)2. (24)
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It should be kept in mind that I'; cannot exist when A = 0 from physical point of
view. For the second foundation parameter, k, to have a meaning, vertical support
of the elastic foandation, which is defined by k, must exist.

By inspection of Eq. (24) above, it becomes evident that three quantities determine
the condition. The authors determined the range of I'; for different values of I';
and A and obtained the relationship shown in Fig. 5(a) through 5(e). Fig. 5(a)
represents the case I's = 0, which corresponds to the Bernoulli-Euler beam resting
on an elastic foundation. It should be noted that the range of I'y increases with
increasing values of A.

For given values of I'y and I';, one can also find the range of A for which the
condition in Eq. (24) can be satisfied. These are shown in TABLE TII in which
case the range of A decreases with the increase in the values cf I'y, for any given
value of I'}.

TABLE III. Range of A For Given Values of Iy and I'y

[ I's | Lower Limit of | Upper Limit of
A A
1.0 | 0.006 0.7067 20.0124
0.010 0.7063 14.1597
0.025 0.7050 8.9720
0.050 0.7028 6.3634
2.5 | 0.005 1.1163 20.0311
0.010 1.1146 14.1850
0.025 1.1096 9.0128
0.050 1.1015 6.4197
5.0 | 0.005 1.5763 20.0620
0.010 1.5715 14.2791
0.025 1.55677 9.0788
0.050 1.5365 6.5085
7.5 | 0.005 1.9276 20.0926
0.010 1.9180 14 2770
0.025 1.8945 9.1427
0.050 1.8580 6.5918
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Fig. 5 Upper and Lower Limits of | versus A
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CONCLUSIONS AND RECOMMENDATIONS

Based on the study presented in this paper, the following conclusions and
recommendations are set forth.

L

The use of finite element technique in foundation engineering design is becoming
increasingly more feasible due to the widespread availability of powerful
micro-computers. Thus, the transport matrix gains on important role since it
is a key element in the formulation of a finite element solution.

The transport matrix provides complete information on the behaviour of the
beam at any point x in the range xi < x < xg to the right of the element
boundary, x;, provided the information at xi(x = () represented by the

column vector {v(0), §(0), T(0), M(0)} T is known.

Since the determination of the transport matrix coefficients is quite
work-involved and the nature of the transport matrices for the problem of
concern in this paper have general validity, transport matrix coefficients were
tabulated in TABLES IV through VIII for both Timoshenko and
Bernoulli-Euler type of beam models. These coefficients may be used directly
in the development of a stiffness matrix for a given beam/foundation soil
system if in compliance with the assumptions made in the choice of a
particular model.

The results shown in Figure 5 and Table III serve as a guidance for the setting
up of proper constants in a given problem of a beam resting on an elastic
spring foundation. These constitute the computer input for a particular
numerical soulution sought by the engineer.
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LIST OF SYMBOLS

A
G

= Area of Beam Cross-Section
= Shear Modulus of Beam Material

I(¢,v) = Total Potential Energy

M(x)
M;

Section Bending Moment
-M(0) Applied End Moment

]
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= -M(l) Applied End Moment

Il

External, Continuous Load

Total Vertical Displacement of Neutral Axis

First Derivative

Rotation of Neutral Axis Due to Bending

Arbitrary Functions form =1, 23 4

Young's Modulus of Beam Material

Area Moment of Inertia of Cross—Section

Section Shear Force in y~direction

-T(0) Applied End Force

-M(1) Applied End Force

First and Second Soil Parameters

Beam Element Length

Coordinate, Independent Variable Along Neutral Beam Axis
Warping Constant '
First Variation

Dimension|ess Parameters
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TABLE IV: Timoshenko Beam / Two-Parameter Elastic Foundation

A = J@E, ks = MEI, A = 14¢(ki+ky), B = 1+ n(k k)

A-b B
Bw gﬁm'd" t+ &,

=)

Bov | sb{aFEy (bds + ady)
Bry | a5{agmy Fo(krkadd, + alkitkahy

B EEHTBT‘*)‘

vé ‘galm—(b‘il’z + ady)

2 2

(ki) +b2 0k ky)?
2abky !

0 —Qi-m__'[b(kl"k!)(bg + &(h+k:)¢,]

gy e e
1
¢1 | bk, %1

2 2 *
B,, | Hhitka}+bl(kty) ki) 4, o,

Ber | (b + ady)

=
Box | apE; ¢
Bou | SAFETE; (8B4, + aAdy
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TABLE V: Bernoulli-Euler Beam / Two-Parameter Elastic Foundation

Az’-——i,k=4\’EI,A=B=I =0
4EI 2 n

2 32
Byy | 51 + 0,

B¢v aés(bcbz = a¢a)

Bry | gapFo(kikaldy + alkitkaog
By _2_%"#'

th‘b —Qém_»[b;;}“a;;,)
» a’[k|+kgi:b2£kt—}_ﬂ.¢l 3 iy
- a.f(k|+k,1’-:b’£k|—ka)’_¢l

B.‘¢ —ﬁr_-[h(h—h)% + a(ki+ka)dy)

]
B | TmEk; (Mt - aby)

1
¢t | Tabk; ¢

2(k,+k b2(k,-k
B a*(k+ z'x)!:bkg I 2)’¢‘1 _—e

Ber | zabr(bos + a0y)

TR Tt m——— 54

-1
|Bex | ZBE
B e g?:ﬁ\r:'(b% + ady)

By [ 50 - sh

2 12
B EZ%’“"”*
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TABLE VI: Timoshenko Beam / One-Parameter Elastic Foundation

A= 4’-?1, ky = A’EI, A= 1+kzl;, B = I—qu

2 1.2 k
va a__g'iﬁ_m'd’l + 9

Byy | 7ap—(bb — ady)

B, | mar—(bdy + ady)
X
Blv Qaé ad

Buy | “mbr—(bb, + ady)

212

Byg | “zab1 + b
k

BT¢ Eﬁ"‘bl

B | ok (-by + aby)

B, -Qal)—xﬁ-[b(lhkﬂ)% = a(1+kon)d,)

1
B¢T 2abk; by
B a? - b?

TT Zabk 5 R BeR

Ber _E%T'(b% + aby)

-1
Byn | bk ®
Bd,)l "Qif}rz'[b(l“km)% + a(1+kan)dy

Bry _EgF'(b‘t’? ~ M)

2__b2 k
Bn LQH"I’I - &,
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TABLE VII: Bernoulli-Euler Beam / One-Parameter Elastic Foundation

1
A-‘I—EI—, l:BA’EI, AIBBI a-b-ﬂ k|=0

En 2
By %-(@ - 4)
By, | 2a(e, + o)
Tv 4.!. 2 3
Blv -k2'¢|
BV¢ "Hl.!_—‘(¢3 + ¢3) —
B¢¢ d
BT¢ t"¢|
Byo ﬁ;—-m - 6y)
Bﬂ' E:TQ_—(% - ¢y)
1
Bor | 15
B | =%,
B.T -&g_'(% + ¢,)
- D N . 3
Boy T;"bl
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