
Tanzania Journal of Engineering and Technology 2024, 43(4):153-163

OPEN ACCESS articles distributed under Creative Commons Attribution

Licence [CC BY-ND]

Websites: https://ajol.org/tjet; https://tjet.udsm.ac.tz

Copyright © 2024 College of Engineering and Technology,

University of Dar es Salaam

ISSN 1821-536X (print); ISSN 2619-8789 (electronic)

https://doi.org/10.52339/tjet.v43i4.1147

Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 43 (No. 4), Dec. 2024 153

Regular Research Manuscript

Effects of Technical Debt on Software Interoperability

Leonard Peter Binamungu

Department of Computer Science and Engineering, University of Dar es Salaam, P.O

Box 33335, Dar es Salaam, Tanzania
†Corresponding author: lepebina@udsm.ac.tz; ORCID: 0000-0001-6385-1353

ABSTRACT

Technical debt (TD) refers to sub-optimal development decisions that

make the software costly to maintain and evolve. Examples of TD include

structural complexity, violation of coding styles, and code complexity.

Existing research has investigated the nature, causes and indicators of

TD, as well as tools and strategies for managing TD. However, although

TD could hinder the ability of a software system to be interoperable with

others, existing literature has limited evidence on how TD affects systems

interoperability. This limits the ability of software engineering teams to

manage TD in ways that do not hinder systems interoperability. To fill

this void, two system interoperability projects in the health sector,

involving 35 systems, were analysed to understand how TD affects

systems interoperability. The complexity of the healthcare domain and

the diversity of the 35 systems enabled a clear understanding of the

intricate interactions between technical debt and systems

interoperability. The identified interoperability challenges were mapped

to five different TD types, all of which can be linked to software

development practices that do not prioritise responsible management of

TD. Documentation and requirements debt were identified as the most

prevalent barriers to interoperability in the studied healthcare domain.

The findings suggest that improving software development processes

through interoperability-sensitive TD management strategies could

improve software interoperability. The paper makes an empirical

contribution by mapping interoperability challenges to technical debt,

enabling us to conceptualise system interoperability challenges as

consequences of technical debt. The implications of this contribution for

domain and research practices are also provided.

ARTICLE INFO

First: Sep. 29, 2024

Revised: Dec. 19, 2024

Accepted: Dec. 30, 2024

Published: Feb. 2025

Keywords: Technical debt, systems interoperability, interoperability challenges, technical debt

and interoperability, technical debt types.

INTRODUCTION

Technical debt (TD) refers to sub-optimal

software development decisions that could

make the software costly to maintain and

evolve (Cunningham, 1992; Kruchten et

al., 2012). The term was first used by

Cunningham (1992) to explain to non-

software engineers the impact of not

performing code refactoring. Later on, it

has been refined to refer to sub-optimal

software development decisions that could

make the software costly (or even

prohibitively expensive) to maintain and

evolve. Interoperability, on the other hand,

denotes the ability of different systems to

interact with each other and exchange

information in a seamless manner. This is

especially important when information

stored in different systems is required in a

https://ajol.org/tjet
mailto:lepebina@udsm.ac.tz

Effects of Technical Debt on Software Interoperability

154 Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 43 (No. 4), Dec. 2024

particular system to facilitate full

understanding of a situation and, therefore,

better decision making (Binamungu, 2024).

Different studies about TD have been

conducted. The studies have focused on the

nature and causes of TD (Kruchten et al.,

2012; Rubin, 2012; Yang et al., 2023), as

well as the strategies to identify and

manage TD (AlOmar et al., 2022; Clark,

2018; Lenarduzzi et al., 2021; Sharma,

2019; Sierra et al., 2019). Tools for dealing

with TD have also been proposed

(Lenarduzzi et al., 2021; Saraiva et al.,

2021).

Although technical debt could hinder the

ability of a software system to be

interoperable with others, existing

literature has limited evidence on how

technical debt affects systems

interoperability. Specifically, existing

attempts to relate technical debt and

software interoperability challenges

(Gallenson et al., 2021; Yang et al., 2023)

have focused on specific kinds of systems

and do not offer a comprehensive mapping

of interoperability challenges that are

attributable to technical debt. This limited

focus could impact the ability of software

engineering teams to manage technical debt

in ways that do not hinder the

interoperability of systems of different

types, within and across different domains.

Specifically, software engineers should be

able to appreciate how the different types of

TD they incur during software

development hinder system

interoperability. However, existing studies

on TD and interoperability do not help

software engineers to appreciate the

potential consequences of different types of

TD on systems interoperability. This could

produce systems that are hardly

interoperable, hindering information

sharing goals that are achievable through

interoperability among systems. To fill this

void, the present study analysed two system

interoperability projects, involving 35

systems from within and outside the health

domain, to understand how technical debt

affects systems interoperability. The

identified interoperability challenges were

mapped to different types of technical debt.

Specifically, these challenges were mapped

to five different TD types: process debt,

design debt, people debt, documentation

debt, and requirements debt. All these five

TD types can be linked to software

development practices that do not handle

technical debt responsibly, similar to naïve

debt (Rubin, 2012), the addressing of which

requires radical improvements of software

development processes.

The present paper makes an empirical

contribution by mapping interoperability

challenges to technical debt, enabling us to

conceptualise system interoperability

challenges as consequences of technical

debt. The implications of this contribution

for domain and research practices are

provided.

LITERATURE REVIEW

Theorising Technical Debt

The term “technical debt” was coined by

Cunningham (1992) to explain to non-

software engineers the impact of not

performing code refactoring. It was

subsequently used to refer to sub-optimal

software development decisions, which

make the software costly or prohibitively

expensive to maintain and or evolve. The

cost (e.g., development effort and time)

required to pay the technical debt could be

very high, sometimes necessitating

abandoning the existing software and

developing a new one. Realising the

potential danger of regarding every sub-

optimal decision made during software

development as technical debt, Kruchten et

al. (2012) used a lens of visibility to

characterise technical debt. Specifically,

they suggested that the definition of

technical debt should be limited to invisible

issues (known only to the development

team) that make a software hard to maintain

and evolve (refer to Figure 1). However,

while useful in understanding the nature of

TD, the visibility lens of TD

characterisation, as used in the work of

L. P. Binamungu, (2024), https://doi.org/10.52339/tjet.v43i4.1147

Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 43 (No. 4), Dec. 2024 155

Kruchten et al. (2012), does not facilitate

understanding of why software engeers

incur TD, and the scope and impact of TD.

Figure 1: Landscape of technical debt (Kruchten et al., 2012; Yang et al., 2023).

Rubin (2012) characterised technical debt

based on the reasons for incurring it. This

led to three types of TD: naïve TD,

unavoidable TD, and strategic TD. Naïve

TD happens when people involved in

software development behave

irresponsibly. Causes of naïve TD include

bad engineering practices, careless design,

inadequate testing, limited project scope,

tight deadlines, and constrained budget.

Thus, improving a software development

process should help the team to avoid naïve

TD. Unavoidable TD is caused by an

unpredictable future and or complexity of a

system under development. It is likely to

happen as a result of the need to adapt a

system to suit new requirements or

technology. Strategic TD is caused by

decisions that favour economic gains of an

organisation at a particular point in time.

For example, a short time to market for a

software product could necessitate an

organisation to incur TD (Rubin, 2012).

Nevertheless, although it facilitates

understanding the reasons for incuring TD,

Rubin (2012)’s lens of TD characterisation

does not enable understanding of the scope

and impact of technical debt.

Clark (2018) used a lens of TD scope and

impact to characterise TD. This led to four

types of TD: local debt, McGyver debt,

foundational debt, and data debt. The local

debt has a limited scope of impact.

McGyver debt refers to temporary

solutions that cannot be relied upon in the

long term. Foundational debt necessitates

future modification of a basic design

assumption. Data debt is caused by

building the content in a system that

contains any of the above debts (Clark,

2018). However, while it enables us to

understand the scope and impact of TD,

Clark (2018)’s lens of TD characterisation

does not pay due attention to how TD

affects systems interoperability.

Technical debt is not always bad: the

context of its introduction is what matters

(Besker et al., 2018; Kruchten et al., 2012).

For example, when the time to market for a

software product is key, it might be good to

incur technical debt, as long as it is properly

documented and payable in the future

(Kruchten et al., 2012). To properly deal

with TD, existing literature has also paid

attention to the identification and

management of technical debt in software

engineering (AlOmar et al., 2022;

Kruchten et al., 2012; Lenarduzzi et al.,

2021; Saraiva et al., 2021; Sharma, 2019;

Sierra et al., 2019). However, little

attention has been paid to understanding

how technical debt could affect the

interoperability of software systems.

Related Work

As regards the effects of technical debt on

systems interoperability, only two studies

were identified. First is the work of Yang et

al. (2023) that proposed a taxonomy for

identifying and assessing technical debt in

Effects of Technical Debt on Software Interoperability

156 Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 43 (No. 4), Dec. 2024

complex distributed systems. Issues related

to interoperability were identified to be

among the indicators of technical debt

when engineering complex systems. The

work suggests that systems interoperability

is affected by the complexity of COTS

(Commercial Off-the-Shelf) components

and higher dependence between system

components. However, the work of Yang et

al. (2023) focuses more on the

interoperability among COTS systems (and

not custom systems). Second, to manage

and mitigate the effects of TD on other

systems that are interoperable with a

particular system, Gallenson et al. (2021)

included interoperability in the schemas for

the assessment of the risks of technical debt

in defence systems. However, these studies

focus on specific kinds of systems and do

not offer a comprehensive mapping of

interoperability challenges that are

attributable to technical debt.

MATERIALS AND METHODS

Research Approach

This study followed a qualitative approach

and employed an interpretivism research

paradigm. Two exploratory case studies

(Yin, 2018) were used to understand how

technical debt affects systems

interoperability.

Data Collection

The data for the present study was collected

through participant observation (active

involvement) in two systems

interoperability projects in the health sector

in Tanzania from 2020 until the time of

writing this article. This provided the

opportunity for the researcher to also have

in-situ conversations with technical and

non-technical stakeholders of the systems

that participated in the two interoperability

projects. The first systems interoperability

project focused on facilitating

interoperability between systems in 13

national, consultant and specialised

hospitals with the District Health

Information Software Version Two

(DHIS2). The second systems

interoperability project focused on

facilitating interoperability between 22

systems for collecting and managing

human resources for health data. This

included systems for pre-service data,

professional registration data, in-service

data, and continuous professional

development data. The complexity of the

healthcare sector in Tanzania (as

characterised by the presence of multiple

systems, developed by multiple

stakeholders, and serving multiple

objectives) and the diversity of the 35

systems enabled a clear understanding of

the intricate interactions between technical

debt and systems interoperability.

The stakeholders involved in the study

include system developers, system

analysts, business analysts, system

vendors, policy makers, regulators, and

other domain experts. The challenges

encountered throughout the two

interoperability projects were documented

and linked to TD, to uncover the TD types

that must be paid by software engineers for

systems interoperability to succeed. The

collected qualitative data were mainly

about challenges that hindered smooth

interoperability among systems, causes of

the interoperability challenges, and how the

causes of interoperability challenges were

related to technical debt.

Data Analysis

To link the identified interoperability

challenges to appropriate types of technical

debts, the taxonomy of TD types (Rios et

al., 2018) was used. The TD types from this

taxonomy are summarised in Table 1.

However, as can be seen in Table 1,

whenever necessary, the definitions of

some TD types were extended to

accommodate the unique challenges

encountered in the present study. Whenever

necessary, more conversations were held

between the researcher and stakeholders to

verify the mapping between the observed

interoperability challenges and technical

debt related to the studied systems.

L. P. Binamungu, (2024), https://doi.org/10.52339/tjet.v43i4.1147

Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 43 (No. 4), Dec. 2024 157

Table 1: Types of technical debts (Rios et al., 2018)

SN TD type Description

1 Design debt Debt related to violating object-oriented design principles. It is

discoverable by analysing the source code. The present study

extended design debt to include poor design of business

processes by failing to streamline all business processes of an

organisation. It can be indicated by complex designs, code

smells, and complex methods or classes

2 Code debt Code violating best coding practices and or rules, producing

code that is hard to comprehend, extend and maintain. It can

be indicated by poor styling, unnecessary code duplication,

and code complexity

3 Architecture debt Problems in an architecture of a software product, which pose

internal quality issues like maintainability. It can be indicated

by things like modularity violations, complex architecture,

quality issues related to system structure, variations in the use

of architectural patterns and policies, paying no attention to

non-functional requirements, and the use of architectural

techniques that are not mature

4 Test debt Problems with the quality of software testing activities.

Indicators of test debt include a lack of tests of different types

(unit, integration, system, and acceptance tests), and deferred

testing

5 Documentation debt Problems related to software documentation. It can be

indicated by missing, inadequate, outdated, or incomplete

documentation. The present study extended the scope of

documentation debt to include policy and legal documentation

required to support systems development

6 Defect debt Known defects that should be fixed but have been deferred to

a later time due to competing priorities. Defect debt can be

indicated by delayed decisions on fixing defects, bugs or

failures in a software product.

7 Infrastructure debt Infrastructure problems that negatively impact the ability of a

software engineering team to produce good quality software.

It can be indicated by things like delayed infrastructure

upgrades, outdated components of a software development

environment, and undesirable configurations of software

development tools.

8 Requirements debt Difference between ideal requirements and the implemented

system. The present study extended requirements debt to

include incomplete or missing requirements. Requirements

debt can be indicated by situations like the presence of

partially implemented requirements and implementing the

system in a way that does not satisfy all non-functional

requirements.

9 People debt People-related problems that can delay software engineering

activities. The present study extended people debt to include

the presence of competing interests among people in an

Effects of Technical Debt on Software Interoperability

158 Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 43 (No. 4), Dec. 2024

organisation, which could hinder the efficient and effective

implementation of systems. People debt can be indicated by

situations like delayed hiring of key software engineering

professionals.

10 Build debt Problems that complicate and delay system building. Build

debt can be indicated by situations like manual system building

process, having code with no customer value involved in the

build process, and the presence of incorrect dependencies that

delay the build process

11 Process debt Inefficient process. It can be indicated by the presence of

inappropriate processes, and manual processes.

12 Automation test debt Work of developing automated tests for functionality

developed in the past, to foster faster software development

cycles and continuous integration. It can be indicated by the

absence of automated tests

13 Usability debt Problems related to system usability. It can be indicated by the

presence of inappropriate usability decisions that have to be

fixed later.

14 Service debt Issues related to incorrect selection and substitution of web

services in systems that follow service-oriented architectures.

The debt can be indicated by inappropriate selection or

replacement of web services.

15 Versioning debt Issues related to versioning of source code. It can be indicated

by situations like unnecessary forking of code.

RESULTS AND DISCUSSIONS

As summarised in Table 2, six key

challenges were encountered across the two

IS interoperability projects in the health

sector. The first challenge was the existence

of heterogeneous systems serving the same

objectives. Examples of this are four

systems for health professional registration

councils. Each of the following three

councils had its own professional

registration and management system: The

Medical Council of Tanganyika, the

Pharmacy Council of Tanzania, and the

Nursing and Midwifery Council of

Tanzania. The fourth system served several

other health professional registration

councils, including the

Medical Radiology and Imaging Professio

nal Council and the Traditional and

Alternative Health Practice Council.

Referring to Table 1, this challenge can be

mapped to process debt and design debt,

because the existence of multiple systems

that serve the same objectives (in this case,

registration and management of health

professionals) indicates the presence of

inefficient processes. After process

optimisation (e.g., through business

process reengineering), one system could

serve all health professional registration

councils. This could, in turn, simplify

interoperability between health

professional councils and other related

systems, because only one system for the

registration and management of health

professionals would be involved in a

systems interoperability endeavour. It is

this failure to streamline all business

processes related to health professional

registration and management that also led

to the mapping of the challenge in question

to design debt. Efficient and effective

design of health professional registration

and management processes should avoid

the existence of multiple systems that serve

duplicate objectives.

L. P. Binamungu, (2024), https://doi.org/10.52339/tjet.v43i4.1147

Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 43 (No. 4), Dec. 2024 159

The second systems interoperability

challenge was the presence of multiple

vendors with different interests and systems

development skills. Seventeen (17)

different vendors had been involved in

developing 35 different systems that were

involved in the two interoperability

projects. The multiplicity of vendors with

different interests and systems

development skills was mapped to people

debt for two reasons. One, it is because

competing interests of people in an

organisation (health sector, in this case)

could hinder efficient and effective

implementation of systems. Thus, the

interests of people involved in systems

development need to be aligned to produce

systems that are easily interoperable with

other systems. Two, the presence of system

vendors who lack appropriate systems

interoperability skills can produce systems

that are not interoperable with others. For

example, some systems in the studied

interoperability projects lacked data-

sharing APIs (Application Programming

Interfaces) and developers of those systems

struggled to produce the required data-

sharing APIs. Consequently, this hindered

the interoperability of those systems.

Therefore, payment of people debt in a

software engineering setting is important to

ensure that the produced systems are

interoperable with others. For example,

ensuring that each software development

team has skills to develop data-sharing

APIs should address interoperability

challenges related to the availability and

quality of data sharing APIs.

The third encountered challenge was the

presence of complex data-sharing policies,

which delayed the implementation of

interoperability between systems. This

challenge was mapped to documentation

debt because it is attributed to the lack of

appropriate documentation for data sharing

such as agreements and policies that

delayed the implementation of systems

interoperability and sharing of data across

interoperable systems. In some cases,

preparing and signing data-sharing

agreements involved navigating long

bureaucratic processes, delaying systems

interoperability endeavours. Other systems

even lacked data-sharing API

documentation. If they remain unpaid,

these documentation debts could prevent

effective and efficient implementation of

interoperable systems. Harmonisation of

policies that facilitate sharing of data across

multiple systems and organisations, and

creating templates for data-sharing API

documentation, could help software teams

and organisations to navigate these

documentation debts that hinder systems

interoperability.

The fourth systems interoperability

challenge was about the availability and

nature of systems support contracts. For

some systems, support contracts had

expired, hindering systems interoperability.

For other systems, making systems

interoperable was regarded as a new feature

that demanded fresh negotiations. These

challenges can be linked to documentation

debt because it encompasses issues related

to systems support contract documents that

hindered smooth systems interoperability.

Thus, software engineering teams should

pay all documentation debts to ensure

effective and efficient systems

interoperability. For example, system

development and support contracts should

designate interoperability as a basic

requirement that should be prioritised in all

system development and support activities.

The fifth challenge was related to missing

data in some systems. The whole point of

systems interoperability is to ensure that

appropriate data is available across

different systems, to inform decision-

making. Thus, interoperable systems with

incomplete data cannot facilitate the

achievement of this objective. However, in

the studied systems interoperability

projects, some data was missing in some

systems. For example, not all data for

health workers in private health facilities

were available or frequently updated.

Providing all important data to other

systems through an interoperability link

Effects of Technical Debt on Software Interoperability

160 Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 43 (No. 4), Dec. 2024

was not a key requirement during the early

stages of developing some of the studied

systems. Since this challenge is related to

systems requirements, it can be mapped to

requirements debt. Thus, requirements debt

related to missing data in interoperable

systems must be paid before systems

interoperability can become a success. For

instance, it might be important for each

software development team to create a

template of all data required in a particular

system and other related systems, to ensure

the availability of all data required to serve

the interoperability objectives.

The sixth and final interoperability

challenge was related to tracking data

across systems. At the beginning of one of

the studied systems interoperability

projects, there was an interest in tracking

individuals across pre-service, professional

registration, and in-service systems.

However, not all systems collected data that

could be used for tracking an individual

across all interoperable systems. For

example, not all the pre-service and in-

service data required to identify a health

worker across different systems (e.g.,

National Identification Number and Form

Four Index Number) was available in all

systems, because some data were not

considered necessary at the time of

specifying requirements for some systems

that were involved in the present study.

Therefore, because the tracking

requirements were not considered at the

time of implementing the individual

systems, it was practically impossible to

track individuals across interoperable

systems. This challenge can be mapped to

requirements debt, because of the apparent

oversight in specifying and implementing

tracking requirements at the time of

implementing the individual systems.

Table 2: Mapping of interoperability challenges to technical debt

SN Interoperability

challenge

TD mapping Description Example(s)

1 Existence of

heterogeneous

systems serving

the same

objectives

Process debt,

design debt
• Unoptimized

processes, leading to

multiple duplicate

systems serving the

same organizational

processes

• Failure to streamline all

business processes of

an organization

Unoptimized

processes for

health professional

registration

councils, leading to

multiple health

professional

registration

systems

2 Multiplicity of

vendors with

different

interests and

systems

development

skills

People debt • Failure to reconcile

competing interests of

multiple system

vendors

• Lack of skills to

develop systems by

considering

interoperability

requirements

Unwillingness to

make systems

interoperable; and

absence of (or

inability to

develop) data

sharing APIs

3 Complexity of

data sharing

policies

Documentation

debt
• Unclear or complex

data sharing policies,

which caused delays

and absence of data

sharing agreements

• Signing of

data sharing

agreements with

some stakeholders

took years, and, in

other cases, data

L. P. Binamungu, (2024), https://doi.org/10.52339/tjet.v43i4.1147

Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 43 (No. 4), Dec. 2024 161

was never shared at

all.

• Expiry of

support contracts

for some vendors at

the time of an

interoperability

project

4 Availability and

nature of

systems support

contracts

Documentation

debt

Absence or inadequate

support of

interoperability in

systems support

contracts

In some support

contracts, making

one system

interoperable with

another was

considered to be a

new feature,

necessitating fresh

negotiations

between system

vendors and

clients.

5 Missing data in

some systems

Requirements

debt

Some data required for

effective and

interoperable systems

were missing

Lack of reliable

data for health

workers in the

private sector

6 Tracking data

across systems

Requirements

debt

Failure to anticipate and

account for the need to

track data across

interoperable systems

Inability to track

health workers

across in-service,

professional

registration and in-

service systems

due to lack of

unique identifiers

across systems

Similar to the work of Gallenson et al.

(2021) and Yang et al. (2023), the findings

of the present study also emphasize the

need to ensure that technical debt in each

system does not hinder smooth

interoperability with other systems.

Therefore, the strategies for incurring and

managing technical debt should also

consider interoperability requirements.

However, different from past studies, the

findings of the present study are unique in

two ways. First, they are relevant for all

kinds of systems, irrespective of the nature

(e.g., COTS systems or custom systems) or

domain (e.g., defence, health or others).

Thus, improper management of technical

debt in all kinds of systems could hinder

systems interoperability. Second, the

present study offers a mapping of some

interoperability challenges that are

attributable to technical debt. This could

help software development teams to deal

with technical debt in ways that mitigate

interoperability challenges.

CONCLUSIONS

Although technical debt could hinder the

ability of a software system to be

interoperable with others, existing

literature has limited evidence on how

technical debt affects systems

interoperability. This could impact the

ability of software engineering teams to

manage technical debt in ways that do not

hinder systems interoperability. The

Effects of Technical Debt on Software Interoperability

162 Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 43 (No. 4), Dec. 2024

present study analysed two system

interoperability projects to understand how

technical debt affects systems

interoperability. The identified challenges

were mapped to different types of technical

debt.

The present paper makes an empirical

contribution by mapping interoperability

challenges to technical debt. Doing so

enables us to conceptualise system

interoperability challenges as

consequences of technical debt. For

researchers, this contribution implies more

opportunities to theorise about how

technical debt affects systems

interoperability, producing theories to

better explain, predict and analyse the

impacts of technical debt on effective and

efficient systems interoperability. For

software engineering practitioners, the

empirical contribution of the present study

implies opportunities for benchmarking

and improving the management of

technical debt by considering

interoperability aspects.

Although only two interoperability projects

were analysed, a total of 35 systems from

within and outside the health domain were

involved in the two interoperability

projects. This provided an opportunity to

study diverse sets of systems developed and

maintained by stakeholders of different

domains. The number and diversity of

studied systems increase the credence of

the findings of the present paper. However,

in the future, it might be interesting to study

more systems from more domains to gain a

better understanding of how technical debts

affect systems interoperability. Predicting

system interoperability based on TD could

be another area of research in the future.

For instance, it might be interesting to

develop predictive models to quantify the

impact of documentation debt on system

integration time. Software engineering

professionals should also pay due attention

to different types of technical debt and how

to manage them, to prevent interoperability

challenges. Specifically, software teams

should avoid naïve debt by improving TD

management practices and the overall

software development process. For

example, software engineers should

incorporate interoperability requirements

into technical debt management tools.

REFERENCES

AlOmar, E. A., Christians, B., Busho, M.,

AlKhalid, A. H., Ouni, A., Newman, C.,

& Mkaouer, M. W. (2022). SATDBailiff-

mining and tracking self-admitted

technical debt. Science of Computer

Programming, 213.

doi.:10.1016/j.scico.2021.102693

Besker, T., Martini, A., Lokuge, R. E., Blincoe,

K., & Bosch, J. (2018). Embracing

technical debt, from a startup company

perspective. Proceedings - 2018 IEEE

International Conference on Software

Maintenance and Evolution, ICSME

2018. doi.:10.1109/ICSME.2018.00051

Binamungu, L. P. (2024). The Role of Source

Systems Strengthening in the Effective

Interoperability of Digital Health

Systems. International Conference on

Implications of Information and Digital

Technologies for Development, 309–324.

doi:https://doi.org/10.1007/978-3-031-

66986-6_23

Clark, B. (2018). A Taxonomy of Technical

Debt.

https://technology.riotgames.com/news/t

axonomy-tech-debt

Cunningham, W. (1992). The WyCash

portfolio management system.

Proceedings of the Conference on Object-

Oriented Programming Systems,

Languages, and Applications, OOPSLA,

Part F129621.

doi.:10.1145/157709.157715

Gallenson, A., Miller, S., & Higgins, S. (2021).

Addressing Software-Based, Platform

Interoperability Risks in Defense Systems

by Using Distressed Debt Financial

Strategies: A Technical Debt Mitigation

Concept. Acquisition Research Program.

Kruchten, P., Nord, R. L., & Ozkaya, I. (2012).

Technical debt: From metaphor to theory

and practice. IEEE Software, 29(6).

doi.:10.1109/MS.2012.167

Lenarduzzi, V., Besker, T., Taibi, D., Martini,

A., & Fontana, F.A. (2021). A systematic

literature review on Technical Debt

L. P. Binamungu, (2024), https://doi.org/10.52339/tjet.v43i4.1147

Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 43 (No. 4), Dec. 2024 163

prioritization: Strategies, processes,

factors, and tools. Journal of Systems and

Software, 171.

doi.:10.1016/j.jss.2020.110827

Rios, N., Mendonça Neto, M. G. de, & Spínola,

R. O. (2018). A tertiary study on technical

debt: Types, management strategies,

research trends, and base information for

practitioners. Information and Software

Technology, 102: 117-145.

doi.:10.1016/j.infsof.2018.05.010.

Rubin, K. S. (2012). Essential Scrum: A

Practical Guide to the Most Popular Agile

Process - ISBN: 9780137043293. In

Scrum Framework.

Saraiva, D., Neto, J. G., Kulesza, U., Freitas,

G., Reboucas, R., & Coelho, R. (2021).

Technical Debt Tools: A Systematic

Mapping Study. International

Conference on Enterprise Information

Systems, ICEIS - Proceedings, 2.

doi.:10.5220/0010459100880098

Sharma, T. (2019). How deep is the mud:

Fathoming architecture technical debt

using designite. Proceedings - 2019

IEEE/ACM International Conference on

Technical Debt, TechDebt 2019.

doi.:10.1109/TechDebt.2019.00018

Sierra, G., Shihab, E., & Kamei, Y. (2019). A

survey of self-admitted technical debt.

Journal of Systems and Software, 152:

70-82. doi.:10.1016/j.jss.2019.02.056

Yang, Y., Verma, D., & Anton, P. S. (2023).

Technical debt in the engineering of

complex systems. Systems Engineering,

26(5). https://doi.org/10.1002/sys.21677

Yin, R. K. (2018). Case study research and

applications: Design and methods. In

Journal of Hospitality & Tourism

Research, 53(5).

doi.:10.1177/109634809702100108.

