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ABSTRACT  

Electrical Capacitance Tomography (ECT) is an imaging technique 

used in industrial process monitoring, particularly for monitoring and 

measuring the composition of multiphase flows. Despite its widespread 

application, the commonly used Linear Back Projection (LBP) 

algorithm often produces low-quality images due to its limited ability to 

handle high permittivity contrasts and nonlinearities. This study 

investigates the use of Otsu thresholding as a post-processing technique 

to enhance ECT image quality. By maximizing inter-class variance in 

the image histogram, Otsu thresholding improves contrast, clarity, and 

structural definition, enabling more effective segmentation of oil and 

gas components in multiphase flows. The proposed Otsu-based 

reconstruction method, LBPU, was developed and evaluated alongside 

the standard LBP and entropy-based thresholding methods (LBPS and 

LBPT) using static experiments with an 8-electrode ECT measurement 

system. The qualitative visual assessment showed that the images 

created by LBPU had a clearer structure and were more visually 

similar to the reference images than the images generated by LBP, 

LBPS and LBPT for both the annular and stratified flows. 

Quantitatively, LBPU produced images with improved reconstruction 

accuracy by generating images with distribution error (DE) values 

below the 10% threshold and higher the correlation coefficient (CC) 

compared to other methods across the entire fraction of components. In 

terms of computational efficiency, the LBP method had the fastest 

processing time compared to other methods. The LBPU method 

required slightly more time than LBP but faster than LBPT and LBPS. 

These findings indicate that the LBPU method can be more suitable in 

online industrial monitoring applications demanding both speed and 

accuracy like those found in the oil and gas industry since it ensures a 

DE value threshold of 10% or less for proper multiphase flow 

visualization. 
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INTRODUCTION 

Electrical capacitance tomography (ECT) is 
an electronic imaging measurement system 

for monitoring and measuring internal parts of 
industrial processes (Guo et al., 2020; Liu & 
Yan, 2021; Shao, 2024) The system is widely 
used in hydrocarbon multiphase flow 
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measurement and monitoring applications 
(Dimas et al., 2024; Hampel et al., 2022). 
Among the key requirements for these 
applications are fast scanning speed and 
reconstructions of high-quality images, as 
online applications require rapid adaptation 
to the dynamic changes in combustion and 
explosion processes within an enclosure 
(Nombo et al., 2021; Nyotoka et al., 2024). 
Despite its advantages and broad 
applications, ECT systems produce poor 
images with low spatial resolution, 
particularly when used in pipelines and 
pneumatic systems (Tiwari et al., 2022). This 
limits the applicability of ECT restoration 
methods to practical industrial systems 
(Deabes & Amin, 2020). On the other hand, 
ECT reconstruction presents inherent 
ambiguity which leads to various potential 
solutions. Moreover, ECT electronics 
experience non-zero leakage currents which 
lead to methods that create a non-linear 
correlation between capacitance and 
dielectric constant (Wang et al., 2020). 
The Linear Back Projection (LBP) algorithm 
stands out as the optimal choice for online 
monitoring because of its simple design and 
efficient computational performance 
(Mwambela & Nombo, 2024; Zhu et al., 
2019). However, it generates images of lower 
quality and fails to give the required 
resolution and accuracy for detailed 
quantitative analysis (Liu et al., 2022; 
Mwambela & Nombo, 2024). The 
algorithm's internal approximations cause 
defects in reconstructed images which lead to 
reduced quality. The pursuit of higher quality 
image reconstruction from these systems has 
motivated researchers to investigate novel 
reconstruction approaches. Researchers have 
proposed many different reconstruction 
algorithms over the last few decades to solve 
this challenge. Researchers have used 
filtering (Guo et al., 2019, 2020; Huang et al., 
2022; X. Wu et al., 2013; Yang et al., 2023), 
data fitting (Nombo et al., 2014, 2015), and 
segmentation (Nombo et al., 2021), 
techniques for preprocessing images created 
with the LBP algorithm.  
Thresholding stands out among 
segmentation-based preprocessing 

techniques as a powerful method for detecting 
and classifying image components (Dismas et 
al., 2024). Entropy-based thresholding 
techniques serve as an effective approach to 
image segmentation within ECT systems 
(Mwambela, 2018). Image processing 
through entropy-based thresholding methods 
like Shannon, Renyi, and Tsallis entropy 
achieves better noise reduction and image 
quality compared to LBP. These methods 
maintain information fidelity from original 
measurements through entropy optimization 
throughout the image creation process. 
However, the computational demands of 
these methods exceed available resources and 
fail to meet industrial online application 
requirements (Mwambela, 2018; Nombo et 
al., 2021). 
Image quality enhancements resulted from 
the thresholding methods developed by Renyi 
and Tsallis which expanded entropy 
calculations and introduced flexible 
adjustments for various flow regimes and 
component distributions (Mwambela, 2018). 
This approach demonstrates enhanced 
performance across various conditions when 
compared to methods based on Shannon 
entropy. The complexity of these algorithms 
creates limitations for their use in real-world 
applications that have restricted computing 
resources. The global entropic thresholding 
methods face difficulties when dealing with 
the nonlinear nature of ECT imaging which 
becomes particularly challenging in 
conditions of low contrast or high background 
noise (Nombo et al., 2021). 
Investigating alternative segmentation 
approaches that use statistical thresholds 
could help overcome current limitations and 
generate higher-quality images for industrial 
process monitoring. One promising technique 
is Otsu's thresholding (Otsu, 1979). The 
automatic thresholding technique of Otsu 
identifies the best threshold by maximizing 
the variation between foreground and 
background pixels in the histogram of an 
image (Katherine et al., 2021; Nyo et al., 
2022). The implementation of Otsu's 
thresholding in ECT image reconstruction can 
result in more accurate component 
segmentation which enhances contrast and 
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boundary definition (Al-Rahlawee & Rahebi, 
2021; Zheng et al., 2022). The proposed 
method will improve the objectivity and 
efficacy of image reconstruction by 
producing high-quality images with 
significant computational efficiency. 
In recent decades, Otsu thresholding has been 
widely used in pre- and post-processing in 
various applications. Studies have shown 
significant improvements in contrast, noise 
reduction and sharpness of the images 
compared to non-threshold methods (Al-
Rahlawee & Rahebi, 2021; Katherine et al., 
2021; Nyo et al., 2022; Tan et al., 2021). 
These advances improve visualization of the 
internal structure of the media and contribute 
to more accurate measurements, ultimately 
improving industrial processes and decision 
making based on quantitative data. 

This study proposes a modified Otsu 

threshold method to improve the quality of 

the images produced by ECT systems. It 

covers the basics of ECT imaging, the 

challenges of reconstructing images and the 

theoretical basis for the Otsu threshold. In 

addition, new research and progress are 

presented in the application of the Otsu 

threshold for improving the image quality of 

ECT in a number of applications. Finally, 

possible further development of this method 

and its role as a non-invasive method of image 

acquisition is explored. 

MATERIALS AND METHODS  

ECT Measurement and Image 

Reconstruction Process  

The electrical capacitance tomography (ECT) 

measurement procedure is shown in Figure 1. 

The process begins with the sensor array 

being carefully positioned around a vessel 

containing the material to be imaged. These 

sensors measure the permittivity distribution 

inside the container and capture important 

data about the internal structure of the 

material. They are responsible for learning the 

permittivity distribution inside the container. 

The sensors' energization to produce the 

necessary electrical signals that interact with 

the material is controlled by the excitation 

scheme. The controller is crucial at this point 

because it regulates the sensor array's 

operation and synchronizes the excitation and 

measurement processes to ensure accurate 

data collection. The measurement electronics 

then process the signals generated by the 

sensors, which are impacted by their 

interaction with the material, to produce raw 

capacitance data.  (Chowdhury et al., 2022). 

 
Figure 1: Description of the ECT Measurement Process (Mwambela, 2018). 

The measured capacities are then recorded by 

the data acquisition (DAQ) system, which 

acts as a link between the image processing 

unit and the sensor electronics. Then, the 

system control unit takes over the image 

processing. This unit ensures the smooth 

coordination of entire the process from 

capacitance measurements to image display. 

Parameter extraction occurs during the image 

processing phase to extract relevant 
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information from the raw capacitances and 

prepare it for image reconstruction 

(Chowdhury et al., 2022). 

The process of reconstruction makes use of 

the extracted parameters to produce an image 

or of the internal structure of the material 

under observation (Xie et al., 2021). Filtering 

techniques are used to address any noise or 

artifacts that may have been present in the 

initial reconstruction. The quality of the 

image is enhanced by filtering, becoming 

sharper and more precise (Nombo et al., 

2014). Following refinement, the image is 

quantized, a technique that breaks down 

continuous image data into discrete levels for 

easier analysis and interpretation. The image 

is subjected to thresholding after quantization 

in order to draw attention to important 

details, set them apart from the background, 

and enhance the image's focus and 

informational value(Nombo et al., 2021). 

The improved and processed image is then 

sent to the display unit, for visualisation and 

further analysis. After going through several 

processing stages, the displayed image is now 

sharper and more useful for qualitative and 

quantitative analysis. It offers important 

information about the internal structure and 

behaviour of the material inside the vessel. 

This all-inclusive procedure, which includes 

everything from sensor data gathering to the 

final image display, captures the crucial 

phases of ECT and guarantees that the 

reconstructed images are of high quality, and 

helpful in a given industrial process. 

 

ECT Reconstruction Problem 

Image Reconstruction Problem in ECT 

To reconstruct an ECT image, two 

computational problems need to be solved: 

forward and inverse (Huang et al., 2022). The 

Forward Problem, provided by 

 
𝐶 = 𝑆𝐺. (1) 

Equation (1) is a simplified model of the ECT 

system, it calculates the capacitance values 

from a given permittivity distribution (𝐺) 

and field sensitivity matrix (𝑆). From 

equation (1), G is a 𝑁×1-dimensional vector 

representing the image vector, N is the 

number of pixels in the image, C represents a 

𝑀×1-dimensional vector indicating the 

normalized capacitance values, 𝑀 is the 

number of the capacitance measurements, and 

S is a 𝑀 × 𝑁 field sensitivity matrix showing 

the effect of the permittivity distribution at 

each pixel on the capacitance between the 

electrodes reflects. This model relies on 

several simplifying assumptions: the 

relationship between capacitance and 

permittivity is linear, the system operates 

under quasi-static conditions, electrodes 

behave ideally, and the permittivity 

distribution is time-invariant during 

measurement. These assumptions make 

equation (1) computationally tractable, but 

they limit its ability to fully capture the 

nonlinear and dynamic nature of real ECT 

systems. 

The inverse problem aims to compute 𝐺 from 

the given capacitance data. However, in most 

cases, 𝑆 is a non-square matrix with no direct 

inversion, hence make it difficult to obtain 

𝐺 from single step methods without addition 

maniputlations (Liu & Yan, 2021). This 

results in a number of reconstruction methods 

to solve the problem. Techniques for solving 

inverse problems can be divided into two 

groups: direct (single-step), where a single 

mathematical step is required to generate the 

result directly from the measured capacitance 

and sensitivity matrix; and iterative 

techniques, in which a set of objective 

functions is iteratively optimized until stable 

conditions are achieved. 

One of the most popular single-step 

reconstruction techniques used in Electrical 

Capacitance Tomography (ECT) is Linear 

Back Projection (LBP). This approach uses a 

linear approximation to the measured 

capacitance data and the sensitivity matrix in 

order to directly compute the permittivity 

distribution. LBP is appealing because it is 

easy to use, computationally efficient, and 

appropriate for online imaging applications. 

Nonetheless, its capacity to resolve non-

linearities and attain high spatial resolution in 
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the reconstructed images is intrinsically 

constrained (Liu et al., 2022; Mwambela & 

Nombo, 2024). In LBP, the reconstructed 

image vector (G) is derived by a linear 

mapping of the capacitance vector (𝐶) using 

the transpose of the sensitivity matrix (S), 

expressed as: 

 
𝐺 = 𝑆𝑇𝐶. (2) 

while LBP demonstrates better performance 

when the permittivity difference between 

regions is low—owing to reduced non-linear 

interactions between pixels—its performance 

diminishes with higher permittivity 

differences. In such cases, the increased 

effect of non-linearities results in blurred or 

less accurate images (Mwambela & Nombo, 

2024). 

To improve the quality of images 

reconstructed by LBP, thresholding can be 

employed as a post-processing step. 

Thresholding enhances image clarity by 

suppressing noise and isolating significant 

permittivity variations, effectively mitigating 

the impact of non-linearities on the 

reconstructed images. This approach refines 

the permittivity distribution by setting 

predefined thresholds, thereby preserving 

critical features while discarding artifacts and 

ensuring more accurate and interpretable 

results (Mwambela, 2018). 

 

Image Thresholding Methods 

Thresholding is used to distinguish objects 

from background pixels in an image by 

determining the optimal set of threshold grey 

levels. These techniques can be divided into 

two categories: two-stage and multi-stage 

thresholding techniques. The two-stage 

thresholding method uses a single threshold 

𝑇, while the multi-stage thresholding method 

uses two or more thresholds 𝑇1, 𝑇2, … , 𝑇𝑛. The 

challenge is to develop cost functions 𝐽(𝑇) 

that can be derived directly from the data, 

without the need for additional assumptions, 

to select appropriate thresholds to use as a 

basis for selection from the set of data 

provided. 

Shannon proposed such cost functions based 

on the information theory concept of entropy. 

This is a concept that quantifies uncertainty in 

order to describe the information contained in 

an image (Graf, 2024). The entropy 𝐻 for an 

image histogram 𝑝(𝑖) (normalized probability 

of each intensity level iii) is defined by 

equation (3) 

 

H = − ∑ 𝑝(𝑖) log 𝑝(𝑖)

𝐿

𝑖

, (3) 

where 𝐿 is the number of gray levels in the 

image and 𝑝(𝑖)is the probability of 

occurrence of the gray level (𝑖). The most 

information is gathered and the most 

uncertainty arises when there is no prior 

knowledge. The fundamental premise for the 

oil-gas tomogram scenario is that the grey 

levels of the tomogram's pixels can be used to 

identify oil and gas. The original grey level 

tomogram can be converted into a binary 

image by carefully choosing a thresholding 

grey level between the dominant values of the 

gas and oil intensities. This will cause the 

tomogram pixels linked to the gas and oil to 

take on values of zero and one, respectively. 

The entropy-based thresholding methods 

determine the optimal threshold grayscale 

values that produce maximum entropy (ME) 

by analysing the profile features of an image's 

grayscale histogram, which is used as a 

probability distribution. For a single threshold 

T, the image is divided into two classes: 𝐶1 

(background), consisting of grey levels 𝑖 =
1,2, … , 𝑇 and 𝐶2 (foreground), consisting of 

grey levels 𝑖 = 𝑇 + 1, … , 𝐿. The entropy for 

each class is computed by equation (4) and the 

total entropy 𝐻𝑡𝑜𝑡𝑎𝑙 is then computed using 

equation (5) as. 

 

H(𝐶1) = − ∑ 𝑝(𝑖) log 𝑝(𝑖)

𝑇

𝑖

, (4) 
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H(𝐶2) = − ∑ 𝑝(𝑖) log 𝑝(𝑖)

𝐿

𝑖=𝑇+1

, 

 

𝐻𝑡𝑜𝑡𝑎𝑙 = H(𝐶1) + H(𝐶2).    (5) 

The ME criterion was used for image 

thresholding by Pun (1981), who introduced 

thresholding techniques that select the 

threshold 𝑇∗ maximizing equation (6).  

 
𝑇∗ = arg max

𝑇
𝐻𝑡𝑜𝑡𝑎𝑙 (6) 

Pun’s work was further improved by Kapur 

et al. (1985), who developed the foundation 

of image thresholding using ME that 

improved and corrected Pun's theoretical 

work. Numerous thresholding techniques 

that address a range of issues and 

constraints, such as spatial data, entropy 

correlation, cross-entropy, and fuzzy logic 

applications, have been developed as a result 

of Kapur's work; a thorough examination 

can be found elsewhere in the literature 

(Bala & Kumar Sharma, 2023; Kowalski & 

Smyk, 2022; Rajinikanth et al., 2021; B. Wu 

et al., 2021). 

Entropy-based methods have played a 

crucial role in image thresholding. However, 

the determination of entropy from 

reconstructed images shows different 

complexities. As a result, information-

theoretical approaches, especially those 

based on Shannon's entropy concept, have 

aroused considerable interest. While 

Shannon's entropy offers a basic framework, 

it has certain restrictions. 

To solve these problems, Renyi (1961) 

generalized Shannon entropy 

mathematically and created a family of 

parametric entropy measures. Renyi's 

entropy is defined by 

 

𝐻𝑞 =
1

1 − 𝑞
log (∑ 𝑝(𝑖)𝑞

𝐿

𝑖

) , (7) 

where 𝑞 > 0 and 𝑞 ≠ 1 is a parameter that 

controls sensitivity to probability 

distributions. When 𝑞 → 1, Renyi entropy 

converges to Shannon entropy, 

demonstrating its versatility. Subsequently, 

Tsallis (1988) introduced a similar entropy 

framework based on statistical physics. 

Tsallis entropy is given by 

 

𝐻𝑞 =
1

𝑞 − 1
(1 − ∑ 𝑝(𝑖)𝑞

𝐿

𝑖

. ) (8) 

The Tsallis entropy converges to the Shannon 

entropy, similar to the Renyi entropy as 𝑞→1. 

Both frameworks include the parameter 𝑞, 

which reduces sensitivity to the shape of the 

probability distribution and allows explicit 

control over the trade-offs of the ME 

threshold. These measures highlight the 

flexibility and adaptability of entropy-based 

image thresholding methods. Entropy-based 

thresholding methods face challenges such as 

high computational requirements, poor 

performance with unclear histogram peaks, 

and sensitivity to parameters such as 𝑞 

(Abualigah et al., 2023; Amiriebrahimabadi 

et al., 2024). These weaknesses limit their 

efficiency and reliability in various 

applications. 

Motivated from these advances, this study 

proposed the use OTSU thresholding in ECT, 

a widely used image segmentation technique 

in image processing industries. OTSU 

Threshold works by maximizing interclass 

variance to determine an optimal threshold 

and provides a robust and computational 

method for image analysis. 

 

OTSU Thresholding for Improved ECT 

Image Reconstruction 

Otsu's thresholding technique is used in this 

study to separate the foreground and 

background areas of the input image 𝐺(𝑘). 

This method minimizes the intra-class 



J. Nombo, (2025), https://doi.org/10.52339/tjet.v44i1.1160 

 

Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 44 (No. 1), Apr. 2025 295 

 

variance of pixel intensities to determine the 

ideal threshold, guaranteeing that the 

variability within each segmented region is 

kept to a minimum. A bimodal distribution 

of pixel intensities is assumed by the 

method, with one peak representing the 

foreground and the other the background. 

Given an image 𝐺(𝑘) with pixel intensities 

distributed between 0 and 𝐿 − 1, where 𝐿 

represents the maximum possible intensity, 

the histogram of the image is used to 

calculate the probability distribution of the 

pixel intensities. Let 𝑇 be a possible 

threshold that divides the pixel intensity 

range into two classes: Class 1 consists of 

pixels with intensities below the threshold T 

and represent the background of the image. 

On the other hand, class 2 contains pixels 

with intensities greater than or equal to the 

threshold T, which represent the foreground 

of the image. The probabilities of each class 

are defined by 

 

𝑝𝑐1(𝑇) =  ∑ 𝑝(𝑖)

𝑇−1

𝑖=0

, 𝑎𝑛𝑑 

 𝑝𝑐2(𝑇) =  ∑ 𝑝(𝑖)

𝐿−1

𝑖=𝑇

 

 

(9) 

where 𝑝(𝑖), represent the probability of each 

intensity level (𝑖). The mean intensities for 

the two classes are given by 

 𝜇1(𝑇)

=
∑ 𝑖𝑇−1

𝑖=0 𝑝(𝑖)

𝑝𝑐1(𝑇)
, 𝑎𝑛𝑑 𝜇2(𝑇)

=
∑ 𝑖𝐿−1

𝑖=𝑇 𝑝(𝑖)

𝑝𝑐2(𝑇)
. 

(10) 

The intra-class variance, which quantifies 

the spread of intensities within each class, is 

expressed as 

 𝜎𝑤
2 (𝑇) = 𝑝𝑐1(𝑇) ⋅ 𝜎1

2(𝑇)
+ 𝑝𝑐2(𝑇)
⋅ 𝜎2

2(𝑇) 
(11) 

where 𝜎1
2(𝑇)and 𝜎2

2(𝑇) are the variances of 

Class 1 and Class 2, respectively.  The goal 

of Otsu’s method is to find the threshold 𝑇∗ 

that minimizes the intra-class variance given 

by equation (12) 

 
𝑇∗ = arg min

𝑇
 𝜎𝑤

2 (𝑇). (12) 

This optimal threshold 𝑇∗ ensures that the 

separation between the foreground and 

background regions is maximized in terms of 

intensity contrast. Once the threshold is 

identified, the segmented image 𝐺(𝑘) is 

computed using the following binary 

segmentation equation: 

 

𝐺(𝑘) = (
1 𝑖𝑓  𝐺(𝑥) ≥ 𝑇∗

0 𝑖𝑓  𝐺(𝑥) < 𝑇∗) (13) 

In this work, the Otsu thresholding algorithm 

was implemented using MATLAB, which 

provides a robust and efficient tool for 

automatic threshold selection. This approach 

ensures that the thresholding process is 

adaptive to the intensity distribution of each 

image, facilitating accurate separation of 

between oil and gas components. This 

method was chosen due to its simplicity, 

efficiency, and proven performance in 

applications where clear intensity-based 

separation between the foreground and 

background is required. 

EXPERIMENTS SETUP AND 

EVALUATION CRITERIA 

Experimental Setup 

Experiments were conducted using an 8-

electrode circular sensor ECT system 

(excitation waveform: 10Vpp, 300–500 

kHz), with the sensing domain divided into 

900 pixels using a 32 × 32 grid, to assess the 

effectiveness of the proposed method (Figure 

2). Prior to the experiments, the sensor 

system was calibrated using air, oil and gas, 

to ensure measurement accuracy. Then 

multiple readings were taken to confirm 

consistency, including a noise test in air to 

verify signal stability. Perspex beads, 

arranged in both annular and stratified 

configurations, were used in static 

experiments and placed at various points 

within the sensing domain. The performance 
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of the proposed method was examined 

across the full component fraction range 

using simulated capacitance data. All 

reconstruction methods were implemented 

in MATLAB and executed on a computer 

with an Intel Core i7-4510U CPU (2.0 GHz) 

and 8 GB of RAM. 

 

Figure 2: An 8-electrode sensor ECT system at the CoICT University of Dar es Salaam. 

 

Evaluation Criteria 

The performance assessment criteria for the 

proposed algorithm may be summarised on 

the basis of accuracy, reliability in different 

operating environments and applicability to 

the hydrocarbon industry (Hjertaker, 1998; 

Mwambela, 2018). 

Accuracy refers to the ability of an 

algorithm to generate images that are 

spatially and volumetrically approximated 

to the original images. The comparative 

metrics used are the qualitative visual 

inspection as well as the quantitative 

distribution error (DE) and correlation 

coefficient (CC) as given by equations (14) 

and (15). 

DE =
1

𝑁
∑  

𝑁

𝑖=1

|𝐺𝑖
𝑟𝑒𝑐 − 𝐺𝑖

𝑟𝑒𝑓
|, (14) 

where 𝐺𝑖
𝑟𝑒𝑐 and 𝐺𝑖

𝑟𝑒𝑓
are, respectively, the 

reference and reconstructed image vectors for 

an image element 𝑖, and 𝑁 represents the total 

number of pixels of the reconstructed image. 

Lower DE signals better results in reservoir 

management in oil industries, for example, 

the desired DE should be less or equal to 10% 

(Almutairi et al., 2020). The correlation 

coefficient (CC) between the reference image 

and the reconstructed image is given by 

𝐶𝐶 =
∑  𝑀

𝑒=1 (𝐺̂(𝑒) − 𝐺̂(𝑒))(𝐺(𝑒) − 𝐺̂(𝑒))

√∑  𝑀
𝑒=1 (𝐺̂(𝑒) − 𝐺̂(𝑒))

2
∑  𝑀

𝑒=1 (𝐺̂(𝑒) − 𝐺̂(𝑒))
2

 

 

                       (15) 

where,  𝐺 and 𝐺̂ represent the average value 

of 𝐺 and 𝐺̂. The correlation coefficient 

represents the correlation between the true 

distribution and the reconstructed image. 

The closer the CC is to 1, the higher the 

quality. Robustness refers to the capability of 

the algorithm to consistently perform over 

full component volume fraction range and 
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under various combination and conditions. 

Usability is the ability of the algorithm to be 

applied practically in the hydrocarbons 

industry to measure the component volume 

fraction of two-component multiphase flow 

(Table 2)(Mwambela, 2018). 

An algorithm can be considered suitable for 

advanced ECT applications if it performs 

well in all three areas (accuracy, robustness 

and usability). This is particularly important 

in critical industries such as the hydrocarbon 

industry, where precision and reliability are 

crucial. For the purpose of experimentation 

and evaluation the algorithms are 

abbreviated as shown in Table 3. 

 

Table 2: Accuracy requirements for a typical 

multiphase meter in hydrocarbons 

production over the full component volume 

fraction scale (Mwambela, 2018) 

Oil industry 

Application 

Desired Volumetric 

Accuracy 

Reservoir 

management 
~ ± 10% for all flow 

phases 

Fiscal-custody 

transfer 

~ ± 2 − 5% for all 

flow phases 

~ ± 0.25% for oil 

Fiscal-

Taxation/royalty 

~ ± 2% for water 

~ ± 1% for gas 

 

Table 3: Algorithms evaluated and associated 

abbreviations 

Algorithms Description 

LBP Linear Back Projection 

LBPS Thresholding algorithm using 

Shannon entropy 

LPBT Thresholding algorithm using 

Tsallis entropy 

LBPU Thresholding algorithm 

UTSU segmentation 

 

RESULTS AND DISCUSSION 

Figure 3 shows images reconstructed using 

LBP, LBPS, LBPT, and LBPU methods for 

annular, bubble, and stratified flow types 

along with their respective reference images. 

Each row represents a different flow type and 

each column (except the flow type and 

reference image columns) represents images 

reconstructed from different methods. The 

LBP method generates poor images with 

blurred boundaries. Images generated by 

LBPS method have preserved overall shape 

but introduces a pixelated texture. LBPT 

produces images with sharp and clear 

boundaries, but it diminishes the middle part 

reconstructed image, especially for annular 

flows. The LBPU successfully creates high 

quality images which resemble respective 

reference images while maintaining the 

clarity and structural integrity. The generated 

images by LPBU are of higher resolution and 

clear definition of boundaries. This superior 

performance of LBPU suggests its potential 

as an effective ECT reconstruction method 

for automatic industrial process control and 

monitoring applications. 

To better evaluate the efficacy of the 

proposed approach, the evaluation was 

extended to include a quantitative assessment 

over the full component fraction range for 

annular and stratified flows. Figure 4 shows 

the distribution error (DE)-based quantitative 

performance of LBP, LBPS, LBPT, and 

LBPU for annular flows across the full 

component fraction range. Poor performance 

was observed by the standard LBP method 

which consistently generate images with high 

DE values, which are above the 10% 

threshold across the majority of Reference 

Gas Fraction (RGF) percentages. LBPS and 

LBPT showed intermediate performance, 

with DE values varying around the threshold 

of 10%; Their DE values remained below 

10% at midrange RGF but exceeded at lower 

and higher percentages. On the other hand, 

LBPU demonstrated the most stable and 

reliable performance, keeping DE values 

below 10% across the entire range of RGF 

percentages, making it a suitable choice for 

applications requiring high accuracy. 
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Figure 3: Qualitative visual comparison of images reconstructed by LBP, LBPS, LBPT and LBPU 

for selected samples of annular and stratified flow. 

 

 

Figure 4: The distribution error (DE) performance of LBP, LBPS, LBPT, and LBPU over full 

component fraction range for annular flow. 

 

 

For stratified flow, the quantitative 
assessment of LBP, LBPS, LBPT, and LBPU 
across the full component fraction range is 
displayed in Figure 5. The standard LBP 

method showed consistently high DE values 
that are above the 10% threshold across the 
entire RGF range, indicating poor 
performance. This is mainly because LBP 
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struggles to resolve sharp horizontal 
interfaces since it relies on a basic linear 
approximation, which limits its 
effectiveness—particularly in stratified flow 
conditions where clear phase separation is 
critical. LBPS and LBPT performed 
moderately, with DE values consistently 
remaining below the threshold of 10%. 
LBPU, on the other hand, kept DE values 
well below 10% throughout the whole RGF 
range, exhibiting the most reliable 
performance. Conversely, LBPU 
demonstrated the best performance by 
maintaining DE values well below 10% 
across the entire RGF range. This suggests its 
usefulness for oil industry application that 
need low DE as stipulated in Figure 5. 
Figure 6 shows correlation coefficient (CC) 
performance for four reconstruction methods 
- LBP, LBP, LPT, and LPU - over the entire 
range of relative gas fractions (RGF) in the 
annular flow. LBPU consistently gives better 
results compared to other methods by 
maintained CC values near 1.0, indicating 
higher accuracy and robustness in ECT 
image reconstruction. Compared to LBPU, 
LBP and LBPS showed weaker performance, 

especially at lower gas fractions, with a slight 
improvement in the mid-range of the RGF 
and a slight decrease at higher values. In 
particular, the LBP and the LBPS performed 
better than the mid-range RGF but were still 
inferior to the LBPU. 
Figure 7 presents the correlation coefficient 
(CC) performance of four reconstruction 
methods—LBP, LBPS, LBPT, and LBPU—
across a full range of relative gas fractions 
(RGF%) in stratified flow. LBPU gives the 
highest CC values throughout the entire 
range, consistently near or above 0.95, 
indicating its high ability to accurately 
reconstruct phase distributions. In contrast, 
LBP shows lower performance, especially at 
low RGF values (below 20%), where CC 
drops to around 0.75. Both LBPS and LBPT 
improve upon LBP, with LBPT slightly 
outperforming LBPS at most points. The 
performance gap is mostly seen at the 
extremes of the RGF range, where LBPU 
maintains high accuracy while others decline. 
These results confirm that LBPU is more 
reliable under variable flow conditions, 
making it better suited for accurate imaging 
in multiphase flows such as oil and gas. 

 

 

Figure 5: The distribution error (DE) performance of LBP, LBPS, LBPT, and LBPU over full 

component fraction range for stratified flow. 
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Figure 6: The correlation coefficient (CC) performance of LBP, LBPS, LBPT, and LBPU over 

full component fraction range for annular flow. 

 

 
Figure 7: The correlation coefficient (CC) performance of LBP, LBPS, LBPT, and LBPU over 

full component fraction range for stratified flow. 

 

The relative execution times of the four 

algorithms (LBP, LBPS, LBPT, and LBPU) 

under annular and stratified flow conditions 

are shown in Figure 8, along with the average 

execution time for all four. With 0.16 seconds 

for annular flow, 0.17 seconds for stratified 

flow, and a similar average of 0.17 seconds, 

the results show that LBP continuously 

obtained the quickest execution time. As a 

result, of the four approaches, LBP has the 

highest computational efficiency. With an 

overall average of 0.26 seconds, LBPU also 

showed comparatively short execution times, 

especially in annular flow (0.23 seconds) and 

stratified flow (0.29 seconds). LBPU was still 

much faster than LBPT and LBPS, despite 

being a little more computationally 

demanding than LBP. On the other hand, 

LBPT had the longest execution time of any 

flow type, averaging 0.58 seconds overall 

and reaching a peak of 0.74 seconds in 

stratified flow. With an average of 0.43 

seconds, 0.36 seconds for annular flow, and 

0.50 seconds for stratified flow, LBPS also 

required a moderate amount of computation 

time. All things considered, these results 
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show a definite trade-off between 

computational complexity and possible 

performance, with LBP and LBPU providing 

faster processing appropriate for online 

applications and LBPT, despite its longer 

execution time, possibly providing additional 

accuracy or robustness benefits that outweigh 

its computational expense. 

 

Figure 8: The average execution time for LBP, LBPS, LBPT, and LBPU.  

 

The results of this study indicate that the 
LBPU approach has a lot of potential for 
online flow monitoring and industrial process 
control. Maintaining operational efficiency, 
equipment reliability, and safety in sectors 
like multiphase transport, chemical 
processing, and oil and gas production 
depends on precise internal flow pattern 
visualization. LBPU demonstrated consistent 
performance across a full range of flow 
conditions and component fractions. Its 
ability to accurately reconstruct the 
underlying flow structure was further 
demonstrated by the fact that it obtained the 
highest correlation coefficient (CC) values 
out of all the methods assessed. LBPU 
showed a high degree of computational 
efficiency in addition to accuracy. It was not 
the fastest method, but it was still feasible for 
online applications given its execution time. 
Because of its ability to balance speed and 
performance, it is a good choice for settings 
where image fidelity and timely processing 
are crucial. Preserving internal characteristics 
and boundary clarity is another strength of 

LBPU, which improves the dependability of 
flow interpretation and facilitates better 
operational decision-making. The ability to 
accurately and in real time monitor complex 
flows, like annular and stratified patterns, is 
essential in practice, especially in the oil and 
gas industry, for production optimization, 
early flow problem detection, and averting 
expensive failures like pipeline blockages. 
According to these findings the accuracy, 
responsiveness, and general safety of 
multiphase flow monitoring systems can all 
be enhanced with implementation of LBPU.  
 

CONCLUSION 

This study examined how to improve image 
quality in Electrical Capacitance 
Tomography (ECT) systems used for 
industrial process monitoring by 
implementing Otsu's thresholding method. It 
addressed a major drawback of the widely 
used Linear Back Projection (LBP) 
technique, which usually results in low-
resolution images with blurred borders 
despite its speed. Clearer and more detailed 
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images are produced by Otsu's method, 
which maximizes inter-class variance and 
enables more accurate segmentation of image 
regions. This is a significant benefit for 
efficient monitoring and control in oil and gas 
operations. In this study, four reconstruction 
techniques were compared: LBP, LBPS, 
LBPT, and the proposed LBPU. The results 
showed that LBPU delivers the most reliable 
performance. It regularly generated excellent 
images with distribution error (DE) values 
less than 10%, which is within the allowable 
range for hydrocarbon monitoring. 
Additionally, the best correlation coefficient 
(CC) values were obtained by LBPU, 
indicating a high degree of agreement 
between the reconstructed and the reference 
images. The execution time was well within 
the range appropriate for online applications, 
providing a useful balance between 
computational efficiency and image fidelity, 
even though it took a little longer to process 
than LBP. LBPU was superior in accuracy 
and consistency, while entropy-based 
techniques such as LBPS and LBPT yielded 
only modest gains. Additionally, the study 
emphasizes Otsu's thresholding's adaptability 
and simplicity of use, confirming its 
appropriateness for industrial ECT 
applications where precision, dependability, 
and ease of use are crucial. Even though the 
current method successfully enhances image 
quality and segmentation, future studies 
could investigate hybrid approaches or more 
sophisticated algorithms to further improve 
performance, especially in flow conditions 
that are noisy or highly dynamic. Overall, the 
linear back projection reconstruction method 
in conjunction with Otsu's thresholding 
provides a reliable and effective online 
multiphase flow monitoring solution for the 
hydrocarbon sector. 
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