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ABSTRACT  

The world is witnessing continued collapse of both buildings and other 

structures during earthquakes, which is an example of a dynamic effect. 

One cause of such disasters may be inadequacies of techniques for 

modeling of these structures during analysis and design as compared 

to their actual responses during dynamic events. Also, techniques for 

numerical modeling and analysis of structures in place are meshed 

methods which do not accurately capture the actual behavior of 

structural elements especially under high dynamic actions due to the 

assumption that mesh geometry is unchanged geometry tend to change 

with respect to time step of such an action. In view of this, meshless 

techniques such as Smoothed Particles Hydrodynamics (SPH) prove to 

be promising. However, the application of SPH method especially in 

solid dynamics, still poses some challenges that reduce its efficiency 

and need respective improvements. This paper reviews advances so far 

done in SPH method and its application in solid dynamics with the key 

focus on weaknesses of the method and soundness of the recommended 

solutions through reviews from recent research, from which 

recommendations for further improvements have been presented as 

well. Findings from reviewed papers show that efforts towards 

improving various challenges on the classical SPH specifically on 

dynamics of solids have been done and are hereby acknowledged. 

However, critical areas that still pose attention and require further 

research include criticality on choice of most suitable kernel function 

that best fulfills all interpolant requirements, criteria for setting of 

smoothing length and general SPH formulation that appropriately 

represents dynamic problem of solids other than those which have been 

covered so far. Special attention on clear way of setting the initial and 

boundary conditions of the kernel domain is also needed. 
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INTRODUCTION 

Failures of various structures due to dynamic 

actions is still a global challenge as the world 

is witnessing continued collapses of various 

buildings and other structures during 

earthquakes, which is an example of a 

dynamic effect. One of the main causes of 

such structural failures is the inadequacies of 

techniques for modeling of these structures 

during analysis and design as compared to 

their actual responses during dynamic events 

(Asprone, et. al., 2008). 

Most of the techniques for numerical 
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modeling and analysis of structures in place 

are meshed methods such as Finite Element 

Methods (FEMs) or Boundary Elements 

Methods (BEMs) and the recent ones are the 

Adaptive Finite Element Methods (AFEMs) 

which are categorized as h -refinement and its 

principle is that, the same mesh type is used 

with changing mesh size during time steps of 

an action, p-refinement where the order of the 

polynomial FE basis functions is increased 

during simulation with no changes in mesh 

geometry and r-refinement where the number 

of mesh nodes is always kept constant while 

allowing nodal positions to be concentrated to 

areas with higher gradients. (Zhao, Ho, & Fu, 

2013). Now, the basic principle of these 

methods involves discretization of the 

structure into meshes and then the structure 

response is simulated from the responses of 

the discrete meshes at time steps of an action 

while assuming unchanged mesh geometry. 

(Liu & Liu, 2010) This procedure does not 

accurately capture the actual behavior of 

structural elements especially under high 

dynamic actions where large deformations in 

the structure occur and thus causing mesh 

distortion, which means, mesh geometry of 

the structure before dynamic event is quite 

different from the one after an event, i.e. mesh 

geometry of the discretized structure is 

subject to change at every time step of a 

dynamic action. Figure 1 and 2 below depict 

mesh geometry of a discretized beam element 

in undeformed and deformed states as the 

effect of the dynamic event. The scenario of 

keeping the same mesh geometry at every 

time step of a dynamic action, while it is not 

true, leads to inaccurate simulation of the 

structure during analysis, and hence a wrong 

design that may lead to structural collapse. 

 

Figure 1: Undeformed meshed beam. 

 

Figure 2: Mesh distortion in a deformed beam.  

To ensure a structure subjected to dynamic 

action remains safe and continues to serve its 

intended purpose throughout the design 

period while fulfilling other requirements and 

guidelines as described in standards, manuals, 

research works, etc., they have to be analysed 

and designed accurately. This goal can be 

achieved if proper modelling and analysis 

techniques are employed. One of such 

techniques that seems to be more promising is 

the Smoothed particle hydrodynamics (SPH) 

method which belongs to the Lagrangian 

family. The principle of this method is that, a 

structural system is characterized by position 

coordinates of its components and time while 

associating mass, stiffness and damping 

properties of the system when it responds to 

dynamic actions. In SPH world, these 

structural components are assumed to be 

imaginary particles while position 

coordinates are known as nodes or supports 

(Price, 2010). Neither meshing nor node 

connectivity information are required for 

modelling a structure by SPH method, except 

defining particle position which is clearly 

defined by its coordinates and material 

properties. The global response of the 

structure under loads is then simulated as a 

vector sum of the responses of the individual 

particles forming the continuum (Monaghan, 

1992). 

However, the classical SPH method was not 

founded as the modelling and analysis method 

for solid dynamic structures, therefore the 

application of this method in this domain 

involved the series of developments of the 

classical one over decades, and in fact still 

further investigations on such improvements 

are inevitable to ensure satisfactory 

performance of the method in this area. 

(Asprone, et. al., 2008). 

From that perspective, this paper aims at 

reviewing the recent research works on the 

enhancements of the SPH method as it is 

applied in solid dynamics so as to identify the 

areas that still need further advances. 

Specifically, this study focused on identifying 

the principles of SPH Method and its 

application in solid dynamics, and to evaluate 

the effectiveness of the recent advances of the 
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SPH method for modelling in structures under 

dynamic loads, and suggesting the 

appropriate improvements on existing 

weaknesses of the method for achieving 

successfully modelling of structures under 

dynamic loads. 

The paper mainly concentrated on a review on 

the principles of SPH method and its 

application in solid Dynamics, an evaluation 

of strengths and weaknesses of potential 

features in current SPH formulations, review 

of various ways for strengthening key features 

in SPH models for solid dynamics and giving 

conclusive remarks. Moreover, the execution 

of this work involved desk study on the 

originality of SPH method through reviews on 

relevant literature, pinpointing advances on 

SPH method as it is applied in structural 

dynamics by studying recent research works 

as well as a classical study on improved areas 

of SPH method in line with fundamentals of 

modelling and analysis of structures under 

dynamic actions. 

 

GENERATIONS AND PRINCIPLES OF 

SPH METHOD 

Generations of the SPH Method 

Smoothed particle hydrodynamics (SPH) is a 

meshless modeling and analysis method 

which was founded by Lucy, (1977), and 

Monaghan & Gingold, (1977) as a modeling 

and analysis method in astrophysics domain 

for analyzing motions of stars in unbounded 

space. Then, Miyama, Hiyashi, & Narita 

(1984) applied this method in the 

determination of fragmentation in collapsing 

molecular clouds. Later, Benz et. al., (2017) 

applied it in solving collision problems of star 

objects. This epoch is the first generation of 

the SPH method and can be termed as the 

classical SPH. In 1992, Monaghan 

successfully introduced it in analysis of fluid 

mechanics problems as the second generation 

of SPH method. Basing on those applications, 

interests then emerged on the applications of 

SPH method in other fields. Benz & Asphaug, 

(1995) and Belytschko et. al., (1996) are 

among the first researchers who improved the 

classical SPH method and introduced it in 

solid mechanics as an alternative to the 

existing meshed methods. This era can be 

considered as the third generation of the SPH 

method. Monaghan (2005), introduced it in 

computer graphics and (Springel, 2005) 

applied it in cosmological simulations. This is 

the fourth generation of the SPH method. 

Principles of SPH Method 

According to Hu, (2021), Bagheri et. al., (2023) 

and Pereira et. al., (2017), any physical quantity 

of a continuum is discretized by particles, of 

which their positions are well defined by 

coordinates as shown in Figure 3. The process 

may start by estimating such a quantity on a 

cell corner which is made of four particles. 

 

 
Figure 3: Discretization by particles in ordered 

pattern. 

Let us assume that; A0.5,3.5 = A1, A1.5,3.5 = A2, 

A0.5,4.5 = A3, A1.5,4.5 = A4 and A1,4 = A. A particle 

quantity, m, at A with coordinates (1,4) as the 

sum of individual quantities of points A1, A2, 

A3 and A4 forming the cell with center at point 

A, can be defined as: 

𝑚𝐴 = ∑ (𝑤𝑘
4
𝑘=1 𝐴𝑘) … … … … … … … … … . (1) 

In this case wk is the weight contributed by 

individual particles to the quantity estimate 

and this depends on particle distance from the 
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centre of the cell such that particle closer to 

the centre has higher weight contribution than 

the one which is far from the centre; and for 

consistency purposes, the summation of 

weight contribution from all particles must be 

equal to unit. From the above figure, therefore, 

∑ 𝑤𝑘
4
𝑘=1  = 1. 

SPH method also performs in a continuum 

with particles allocated in disordered points as 

shown on Figure 4. In this case, 

approximation of  partilcles’ effects on any 

physical quantity is done first by selecting a 

set of particles of proposed uniform size to 

form boundary of the particles included in an 

estimate. This boundary in SPH language is 

known as the domain and in this paper its 

radius is denoted as ‘h’and it is termed as the 

‘cut – off radius’. then, assigning weights to 

particles by applying special weight functions 

called kernels with respect to their distances 

from the centre of the domain. Again as the 

principle, consistency must be mantained on 

lumped effects of particle responses, such that, 

the summation of weights due to all particles 

in a domain must be equal to unit (1). It should 

also be noted that, particles existing outside 

the boundary contributes zero weights in a 

particular domain. 

 
Figure 4: Discretization by particles in disordered 

pattern. 

The lumped quantity, A(ṟ), of an element in a 

domain, Ω, can then be estimated by using an 

SPH interpolant as devepoed by (Monaghan, 

1992) and (Hu, 2021) such that: 

𝐴(ṟ) = ∫ 𝐴(ṟ′)𝛿(ṟ − ṟ)𝑑ṟ′ … … … … … … (2) 

in which, A(ṟ’) is the quantity of the particle,′𝑗′ 
which is at the distance,    (ṟ − ṟ′) from the centre 

of the boundary of the particles included in an 

estimate. This boundary in SPH language is 

known as the domain and in this paper the radius 

of that domain is denoted as ‘h’ as shown in 

Figure 4. 

In equation (2) the term 𝛿(ṟ − ṟ′)  is the dirac 

function that represents the weight function of 

individual particles involed in an estimate. Again, 

to maintain consistency in the domain, therefore; 

∫ 𝛿(ṟ − ṟ)𝑑ṟ′ = 1 … … … … … … … … … . . … … (3) 

The term, d ṟ′  in equations (2) and (3) is the 

element of integration or simply the volume term. 

If we let dṟ′ be equal to 
𝑚𝑗

𝜌𝑗
 where 𝑚𝑗 and 𝜌𝑗  are 

mass and density of a particle ‘j’ at the distance 
(ṟ − ṟ′).. The SPH form of equation (3) can then 

be written as in equation (4) to define the same 

quantity, 𝐴(ṟ) but denoted as Ai and the weight 

function is given as  Wij This equation is called 

“The Basic Equation for SPH Formulation”. 

𝐴𝑖 = ∑ 𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗
𝐴𝑗 … … … … … … … . … . (4)

𝑁

𝑁=1

 

Another significant issue in SPH formulations is 

the way of estimating derivatives which are 

important functions when solving a dynamic 

problem. Therefore, according to Monaghan, 

(1992) the first derivative of the an SPH 

formulation may be presented as: 

𝛻𝑖 . 𝐴 = ∑ 𝑊𝑖𝑗𝛻
𝑚𝑗

𝜌𝑗
𝐴𝑗 … … … … … … . … . (5)

𝑁

𝑁=1

 

From equation (5) higher derivatives may be then 

be derived respectively. 

APPLICATION OF SPH METHOD IN 

SOLID MECHANICS AND ITS 

ADVANCES 

General Overview 

The distinctive application of SPH method in 

analysis of structures under load actions can 

be well demonstrated by studying the 

deflection of a simple cantilever beam as a 

continuum that has been discretized in 2D 

finite particles as shown in Figure 5 below. 

 

Figure 5: Particle discretization of a cantilever beam 

in SPH method. 

D 
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Further, Figure 6 shows a magnified portion 

D of the beam in figure 5 such that a particle 

‘i’ in the beam with initial position in the 

undeformed form is C0 of which its 

coordinates are (x0,y0) and its corresponding 

position vector A. In the deformed form after 

a time step, n, of a dynamic action, new 

position of the same particle will be C1 and its 

coordinates are (x1,y1) such that; C1 (x1,y1) = 

C0 + u, where u is travelled by a particle ‘i’ 

from C0 to C1 along both x and y axes.. The 

total displacement of the domain may be 

obtained as the vector summation of 

displacements of the individual particles 

forming the domain and basically is equal to 

vector sum of A + u. (Naceur, et.al, 2014). 

However, it should be well noted that, in SPH 

simulation, the value of any estimated 

quantity as the response of particles on the 

applied load in a particular domain is not 

constant for all particles but it decreases with 

the respect to particle distances from the 

center of the domain (Kayyer, et al., 2024). 

Now referring to the same Figure, the total 

deflection, in SPH form, U(r) of the beam as 

a continuum is given by Naceur, et.al, (2014) 

as  

𝑈(𝑟) = ∑ 𝑢𝑗
𝑁
𝑖=1 𝑣𝑗𝑊(𝑟 − 𝑟𝑗, ℎ) … … … … . … . . (6) 

where j is iterated over all particles, N = 

number of particles in a domain, vj is the 

volume attributed to particle j, rj the position, 

and uj is the displacement of particle j at rj. 

The volume vj, is given as 
𝑚𝑗

𝜌𝑗
, such that, 𝑚𝑗 

and 𝜌𝑗 are mass and density of the particle j in 

the domain. W is the weight function as 

defined earlier (Naceur et. al., 2014). 

 
Figure 6: 2-D Particle displacement in SPH method. 

With regard to solid continuum mechanics, as 

to-date, SPH method have been adapted with 

modifications or improvements in modelling 

and analysis of various structures that are 

subjected to either static or dynamic actions 

as discussed in subsequent paragraphs: 

EVALUATION OF ADVANCES IN SPH 

METHOD FOR DYNAMICS OF 

STRUCTURES 

Introduction of Kernel Functions as SPH 

Interpolant 

Monaghan, (1992); introduces the 

replacement of the not-smooth dirac delta 

function with kernels as appropriate smooth 

weight function in an SPH interpolant to solve 

wave equations that are applicable in SPH 

problems. The researcher strongly 

recommended the application of the gaussian 

kernels of the third order and which are 

truncated at 2h, where 2h is the smoothing 

length that is defined as the width of the 

domain containing several particles. The 

original SPH formulation face criticalities of 

dealing with particles at edges as some of 

such particles can spill out of the domain 

boundary. Therefore, the estimation of their 

actual contribution to the physical quantity of 

the domain requires special treatment, the 

researcher however, did not propose the way 

of dealing with that issue. 

Another critical problem in the method of 

which Monaghan (1992) did not address it, is 

the principle for setting the smoothing length 

in relationship to the number and size of 

particles forming the domain. This has 

significant effect to the response of the 

particles on external dynamic forces because 

particles with higher sizes will have big mass 

and thus result to higher inertia force as 

compared to smaller sized particles. Again, 

this issue needs special attention for the 

method to yield accurate response of 

continuum under dynamic action. 

Nonlinear Analysis of Two-Dimensional 

Solid Structures  

Naceur et. al., (2014) modified and efficiently 

adapted the SPH method for the analysis of 

two-dimensional structures which undergo 

nonlinearities in their geometry when 

subjected to dynamic actions. The 

modifications on the classical SPH were 
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based on improving particle inconsistency 

and tensile instability for the structures under 

stress state as arises in Eulerian-based SPH 

problem which eventually cause high 

deformations of the continuum under loading. 

The first challenge was alleviated by 

introduction of modified kernels and their 

derivatives based on Taylor’s series 

expansion while the second one was solved by 

proposing an SPH formulation that applies a 

total Lagrangian expression. The authors 

presented the SPH formulation for 

approximated quantity Ua as follows: 

𝑈𝑎 = ∑ 𝑢𝑏

𝑁𝑏

𝑏=1

𝑊𝑎𝑏𝐴𝑏 … … … … … … . … . . (7) 

where Nb refers to the number of neighboring 

particles b within the support domain and A is 

the area. The term Wab is the weight function, 

which in the research refers to the B-spline 

function. 

Applying the total Lagrangian formulation 

and to control the so-termed tensile instability, 

the authors adopted an approach which is 

given by 

𝑈𝑎 =
∑ 𝑢𝑏

𝑁𝑏
𝑏=1 𝑊𝑎𝑏𝐴𝑏

∑ 𝑊𝑎𝑏𝐴𝑏
𝑁𝑏
𝑏=1

… … … … … . … . . (8) 

and the first derivative of the above function 

is therefore given as 

(𝛻 ∙ 𝑈)𝑖 = ∑(𝑢𝑏 − 𝑢𝑎)∇𝑊𝑎𝑏

𝑁𝑏

𝑏=1

𝐴𝑏 … … (9)  

The methodology of the research involved 

modeling and analysis of a two-dimensional 

numerical model which was the roll up of a 

clamped beam. The geometry of the beam 

model is shown in Figure 7a where the length, 

L = 100mm, the width, b = 5mm and the 

thickens, t = 5mm. Material type for the beam 

is aluminum with density equal to 2700kg/m3, 

elastic modulus, E = 73.4GPa and a poison 

ratio, v = 0.3. 

 
Figure 7a: Idealized beam with end moment. 

 
Figure 7b: Equivalent beam model. 

 

 
Figure 7c: Load-displacement relation between 

SPH and FEM. 

The beam was discretized into 200 x 10 

circular shaped particles and the idealized 

moment was generated at free end by couple 

of forces as shown in Figure 7b. Nonlinear 

analysis of the idealized beam was done after 

replacing the moment at C with a couple of 

forces AB as shown in Figure 7b.  

For the purpose of following this work, it is 

important to recall back the principle of Euler 

beam such that: 

The moment, M, of a beam is presented  𝑀 =
𝐸𝐼

𝜌
, and  𝜌 =

𝑆

𝜃
, where EI is a beam stiffness, ρ 

is curvature, s is the length of arc (beam), θ, 

angle of curvature. Then, full curvature of a 

beam will occur when s = L and θ = 2π and in 

such a case therefore; 

𝑀 =  
2π𝐸𝐼

𝐿
) 

Since the same Moment, M may be given as 

M = Ft, then, 𝐹𝑡 =  
2π𝐸𝐼

𝐿
 

This means that the force, F, which is required 

to generate the curvature at any angle, θ, can 

be obtained as: 

𝐹 =  
𝜆π𝐸𝐼

𝐿𝑡
  where λ = 0.0, 0.1, 0.2, …, 2 

Again, it can be learnt from the methodology 

of this research that, analysis to determine 

vertical deflection at the free end while 
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imposing various values of load factor, λ was 

done by using both improved SPH method 

with application of equations (8) and (9) and 

FEM where the solutions from both 

approaches as referred from Figure 7c show 

close results where the value of the expected 

maximum deflection when λ  = 2 computed 

from SPH was +0.005mm and that of FEM 

was -0.006mm, meaning that in both cases the 

beam geometry was almost transformed to as 

circle. The conclusion to be drawn here is that, 

closeness of the results obtained from 

improved SPH method and FEM as the 

control method indicate the validity of the 

SPH method. 

Analysis of Cable Structures 

Dinçer & Demir, (2020) introduced the 

adaptation of classical SPH method in 

analysis of cable structures. They proposed a 

numerical model that represent a cable 

structure having only longitudinal stiffness in 

tension with the introduction of an artificial 

viscosity term and the damping parameter in 

SPH formulation for proper capturing of the 

cable behavior. 

The momentum equation was then developed 

as follows: 

𝑑𝑉

𝑑𝑡
= ∑ 𝑚𝑏 ((

𝜎𝑎
𝑖𝑗

𝜌𝑎
2 +

𝜎𝑏
𝑖𝑗

𝜌𝑏
2 ) + 𝜋𝑎𝑏𝛿𝑖𝑗 −𝑁

𝑏=1

𝜔

𝐴
𝐶𝑎𝑏) ∇𝑊𝑎𝑏 + 𝑔𝑎……………………….(10) 

𝜎𝑎
𝑖𝑗

and 𝜎𝑏
𝑖𝑗

 are stress tensors while ρa and ρb 

are pressure on particles a and b respectively, 

g is the gravitational acceleration of a particle 

a, mb mass of particle b,  𝜋𝑎𝑏 is the artificial 

viscosity and 
𝜔

𝐴
𝐶𝑎𝑏 is the damping term. 

This equation was then used to model and 

analyze a cable structure. However, the 

research work addressed neither the way of 

setting the smoothing length in relation to 

other parameters nor stated the advantages of 

the selected Wendland kernels over other 

kernels. Again, analysis of other potential 

solid structures, like beams under transverse 

vibration were not considered in this research. 

Improvements on Loss of Particle 

Consistency in SPH Formulations 

Sigalotti et. al., (2021) carried out a 

comprehensive research on recent 

improvements on the consistency of the SPH 

method as multi-structural modeling and 

analysis technique. One of areas of interest in 

this research are the contents in chapters for 

particle inconsistency and corrective 

smoothed particle methods. In the first 

mentioned chapter, the authors addressed that 

particle inconsistency in an SPH doman is 

caused by error in the estimation of kernels 

and the procedure for particle descritization. 

The authors stated that; if {f(x)} is the 

smoothed estimate of a quantity f(x) of a 

continuum and  that W is the smoothing kernel 

function within the domain which is defined 

by the smoothing length, h; such that W = 0 

except inside the domain whose radius is 

given by kh, where k is some integer that 

depends on the kernel. Now W = 0 for ||x-x’|| 

> kh.When applying the Taylor’s series 

expansion To ensure kernel consitency 

therefore, a higher order kernel has to be used 

suh that: 

∫ 𝑊(∥ 𝑥 − 𝑥′ ∥, ℎ)𝑑𝑛𝑥 = 1 … … … … . . (11) 

The same principle can again be employed to 

derive the estimate of derivative and its 

moment as  

〈∇f(x)〉 = ∫ 𝑓(𝑥′)∇𝑊(∥ 𝑥 − 𝑥′ ∥, ℎ)𝑑𝑛 … . (12) 

The second error comes from the procedure 

for particle discritization which in fact is the 

function of the number of the particles, n = 

ϕ(n) around, the refered one and the way these 

particles are distributed (quasi or random 

ordered). For particles of a quasi-order, ϕ(n) 

∝
log 𝑛

𝑛
, while for randomly distributed 

particles, ϕ(n) ∝  n-1/2. Again, is has been 

noted that the error in particle discretization 

can be reduced by making the smoothing 

length, h, smaller and the number of particles, 

n in a kernel domain, and number of all 

particles, N being larger. This means that, in 

the limit of 𝑛 → ∞, ℎ → 0 , then 
𝑛

𝑁
→ 0 

becomes necessary for achieving full 

consistency. It is also cited that, 
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ℎ ∝ 𝑁−1/𝛽 and 𝑛 ∝ 𝑁
1−

3

𝛽.                       (13) 

where β = 3 +m/p, and ½ ≤ p ≤ 1. Now, for m 

= 2 and a random distribution (p = 1/2), β = 7 

and n ∝ N0.57, while for quasi-ordered 

distributions (p = 1), β = 5 and n ∝ N0.4 and 

for an intermediate value, β =6, h ∝ N−1/6 and 

n ∝ N1/2. If higher-order kernels (m > 2) are 

chosen, a stronger scaling of n with N would 

be required. The research thereafter studied 

various corrective methods on these 

challenges and recommended on the methods 

based on Taylor series expansions of the 

kernel approximations of a function and its 

derivatives in SPH for achieving any degree 

of consistency.  

However, the research, warned that, such 

corrective schemes come at the price of 

involving the inversion of large matrices and 

hence, implying high computational cost for 

in terms of time required for simulations 

leading to a loss of numerical stability due to 

high possibility of large numerical errors in 

matrices.  

In fact, authors reviewed the recent 

developments on application of SPH method 

as compared with the original one especially 

on weaknesses relating to kernels, particle 

discretization as sources of particle 

inconsistency being the critical shortfalls of 

the method and recommended the said 

improvements. Issues about the influence of 

other parameters like the relationship between 

material properties on setting of the 

smoothing length and the proper way of 

dealing with particles at or closer to the kernel 

boundaries and particular application on 

solids which is also one of the crucial issues 

were not broadly addressed in this research. 

CONCLUSION AND 

RECOMMENDATIONS 

From the findings of reviewed works, the 

paper agrees that, SPH method is more 

promising technique for modeling and 

analysis of various structures that are 

subjected to dynamic actions as compared to 

meshed methods and much advances have 

been done to improve weaknesses of the 

original SPH. However, such advances have 

only enabled application of this method in 

modeling and analysis of limited types of 

structures under dynamic actions such as bar 

element, cable systems and beam under static 

varying loads. Key areas that have been 

greatly improved include formulation of SPH 

problems by replacement of dirac delta 

function with kernel function as an 

appropriate SPH interpolant, expressions of 

derivative functions of SPH approximations 

and ways of improving particle consistency in 

SPH formulations. 

Now; for the purpose of improving the 

applicability of the SPH method in solid 

dynamics, further research works is required 

on principles for selection of kernel function 

that fulfils all required interpolant 

requirements, criteria for setting of smoothing 

length in relation to other parameters such as 

particle size and density. More efforts have to 

be done on the procedures for setting the 

initial and boundary conditions of the kernel 

domain for SPH in solid dynamic problems. 

REFERENCES 

Asprone, D., Auricchio, F., Reali, Sangalli, G., 

Prota, A., & Manfredi, G. (2008). 

Smoothed Particle Hydrodynamics 

Method in Modeling of Structures under 

High Dynamic Loads. The 14th World 

Conference on Earthquake Engineering. 

Beijing. doi:10.3390/app10248983 

Bagheri, M., Mohammadi, M., & Riazi, M. 

(2023). A review of smoothed particle 

hydrodynamics. Computational Particle 

Mechanics, II, 1163–1219. 

doi:10.1007/s40571-023-00679-7 

Belytschko, T., Kronguaz, Y., Organ, D., 

Fleming, M., & Krysl, P. (1996). 

Meshless Methods: An overview and 

Recent Development. 

doi:10.1016/S0045-7825(96)01078-X 

Benz, W., & Asphaug, E. (1995). Simulations of 

brittle solids using smooth particle 

hydrodynamics. Science Direct, 253-265. 

doi:10.1016/0010-4655(94)00176-3 

Benz, W., Slattery, W. L., & Cameron, A. G. 

(1987). The origin of the Moon and the 

single-impact hypothesis, II. Icarus, 30-

45. doi:10.1016/0019-1035(87)90160-6 

Dinçer, A. E., & Demir, A. (2020). Application of 

Smoothed Particle Hydrodynamics to 



H. J. Mtyana et. al., (2024), https://doi.org/10.52339/tjet.v43i4.972 

Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 43 (No. 4), Dec. 2024 53 

 

Structural Cable Analysis. Applied 

Sciences, 10(24), 8983. 

doi:10.3390/app10248983 

Kayyer, A., Shimizu, Y., Lee, C. H., et. al. (2024). 

An improved Updated Lagrangian SPH 

Method for Structural Modelling. 

Computational Particle Mathematics, 11, 

1055-1086. doi:10.1007/s40571-023-00673-

z 

Lin, J., Naceur, H., Coutellier, D., & Laksimi, A., 

(2015). Geometrically nonliniear analysis 

of two-dimensional structures using an 

improved smoothed hydrodynamics 

method. International Journal for 

Computer Aided Engineering and 

Software, 32(3), 779-795. 

doi:101108/EC-122013-03306 

Liu M. B., & Liu. G. R., (2010). Smoothed 

Particles Hydrodynamics (SPH): An 

Overview. Archives of Comutational 

Methods in Engineering, 17, 25-76. 

doi:10.1007/s11831-010-9040-7. 

Lucy, L. B., (1977). A numerical approach to the 

testing of the fission hypothesis. 

Astronomical Journal, 82(12), 1013-

1024. doi:10.1086/112164 

Miyama, S., Hiyashi, C., & Narita, S., (1984). 

Criteria for collapse and fragmentation of 

rotating, isothermal clouds. Astrophysical 

Journal, Part 1, 279, 621-632. 

doi:10.1086/161926 

Monaghan, J., (1992). Smoothed Particle 

Hydrodynamics. Annual Review of 

Astronomy and Astrophysics, 30, 543-

574. 
doi:10.1146/annurev.aa.30.090192.002551 

Monaghan, J. J., (2005). Smoothed particle 

hydrodynamics. Reports on Progress in 

Physics, 1703-1759. doi: 10.1088/0034-

4885/68/8/R01 

Monaghan, J. J., & Gingold, R. A. (1977). 

Smoothed Particle Hydrodynamics: 

thoery and application to non-spherical 

stars. Royal Astronomical Society, 375-

389. doi:10.1093/mnras/181.3.375 

Naceur, H., Lin, J., Coutellier, D., & Laksimi, A. 

(2014). Efficient smoothed particle 

hydrodynamics method for the analysis of 

planar structures undergoing geometric 

nonliniarities. Journal of Mechanical 

Science and Technology. 

doi:10.1007/s12206-015-0232-9 

Pereira, G. G., Cleary, P. W., & Lemiale, V., 

(2017). SPH Method Appleid to 

Compression of Solid Materials for a 

Variety of LoadingCondition. Applied 

Mathematical Modelling, 44, 72-90. 

doi:10.1016/j.apm.2016.12.009 

Price, D. P., (2010). Smoothed Particle 

Hydrodynamics and 

Magnetohydrodynamics. Melbourne: 

Monash University . 

Serroukh, H. K., & Mabssout, M. (2019). 

Meshfree Method for Large Deformation 

in Dynamic Problem. MATEC Web of 

Conferences 286, 0200. doi: 

10.1051/matecconf/201928602005 

Sigalotti, L. G., Klapp, J., & Gesteira, M. G., 

(2021). The Mathematics of Smoothed 

Particle Hydrodynamics (SPH). Frontiers 

an Applied Mathematics and Statistics. 

doi:10.3389/fams.2021.797455 

Springel, V., (2005). The cosmological simulation 

code GADGET-2. Royal Astronomical 

Society, 364(4), 1105-1134. 

doi:10.1111/j.1365-2966.2005.09655.x 

Zhao, Y., Ho, S. L., & Fu, W. N., (2013). A Novel 

Adaptive Mesh Finite Element Method 

for Nonlinear Magnetic Field Analysis. 

Institute of Electrical and Electronics 

Engineers Transactions on Magnetics, 

49(5). doi:10.1109/TMAG.2013.2245113 

 


