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ABSTRACT  

Reduced network inertia due to high penetration levels of non-

synchronous generators in modern power systems is becoming a pressing 

issue. As a result, very quick inertial responses are observed after 

contingency events in networks. Due to quick inertial responses, there is a 

practically very limited time interval for control actions in real-time. Thus, 

system operators need to understand the prior inertia values to plan, 

control, and operate the network securely. Long-range forecasting of the 

network's inertia values, in contrast to short-range forecasting techniques, 

can pinpoint when the network is most likely to be vulnerable in a 

reasonable time ahead. Thus, in this research work, an improved ARIMA 

model (𝒾-ARIMA) technique for long-range forecast inertia values in a 

modern network is proposed. To estimate future inertia values over a long 

period of time, the 𝒾 -ARIMA model leverages strong periodic and 

seasonality characteristics of previous time series data. The 𝒾 -

ARIMAmethod is tuned for optimal values of a moving observant predictor 

P, periodicity and seasonality factor s and smoothing factor n that give 

the best forecasts with competitive accuracy. Rigorous evaluation and 

tests of the method, which are performed on the New Zealand network data 

using the Power Factory DigSilient platform, demonstrate that the 

proposed 𝒾-ARIMA is quicker, more reliable, more accurate, and better 

than other conventional forecasting methods. 
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INTRODUCTION 

Background and motivation  

For several decades, synchronous generators 

(SGs) have been fundamental components of 

power systems, traditionally used to produce 

active power, control frequency and voltage, 

and provide system inertia (Milano et al., 

2018). The inertia of a power system 

significantly influences its ability to remain 

stable during power imbalances. It plays a 

crucial role in mitigating fluctuations and 

disturbances within the first 5 seconds 

following a contingency (Milano et. al., 2018; 

Zhang & Xu, 2017). Although inertia 

primarily affects the initial moments after a 

power imbalance, its role is essential for 

network stability. 
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Increasing integration of converter-based 

sources (CBS) such as wind and solar power 

and a large fleet of electric vehicles (EV), 

which are connected to the grid via converter-

based techniques, is rapidly replacing 

conventional rotating machines in the 

contemporary grid (Ratnam et. al., 2020). 

Most of these CBS are non-synchronous 

generators with zero or small inertia 

contribution to the grid. It is important to 

mention that, one of the fundamental impacts 

of high share of converter-based sources to 

modern grid is the decrease of the 

conventional inertia from the grid. Although 

these CBS can be controlled to provide the so-

called synthetic inertia and frequency support 

to boost the low inertia grid, the time 

variability of the total inertia is another 

concern to the stability of the power system to 

be addressed (Makolo, et. al., 2021b). 

The fact that network inertia can be a variable 

quantity in the network triggered transmission 

system operators’ (TSOs) interest in a prior 

understanding of the system inertia behaviour 

in power systems (Makolo, et. al., 2021b). 

Prior understanding of system inertia can 

enable power system operators (PSOs) to take 

the right control actions related to the system 

stability and operate the network securely (Du 

& Matevosyan, 2017). Regarding 

understanding the behaviour of network 

inertia, several methods for estimating inertia 

have been proposed in the body of literature. 

The methods are meant to comprehend the 

power system’s inertia values. For instance, 

offline estimation techniques such as in 

(Makolo, et. al., 2021; Sfetkos et. al., 2023) 

are established to quantify the past inertia 

values when events happen in power systems 

for analysis purposes. This is to say, 

information obtained from offline inertia 

estimation techniques cannot be used for 

protection and remedial measures in real-

time. For this reason, methods to estimate 

inertia values in real-time, such as in (Panda 

et. al., 2020; Liu et. al., 2020; Makolo, et. al., 

2021a; Linaro et. al., 2023), are established to 

monitor the inertia variation in the power 

system and, therefore, can be used for analysis 

in real time.  

Nevertheless, as inertia is becoming a time-

dependent parameter in the power system, 

offline and real-time methods for inertia 

estimation cannot serve grid protection 

purposes (Kisinga et. al., 2024). Also, due to 

fast transient response, the online inertia 

techniques may be prone to instabilities in 

power systems in case of contingencies 

happening at low inertia, which is not 

predicted in the time ahead (Du & 

Matevosyan, 2017). Therefore, a prior 

understanding of network inertia well in the 

time ahead is important to forecast the 

behaviour of the power system in the long 

range. The reduction of total rotating inertias, 

which results in fast transients, needs to be 

forecasted in networks.  

Again, synthetic inertias that are also known 

as virtual or digital inertias, which support 

frequency response in modern power systems, 

are becoming tradable quantities (Heylen et. 

al., 2020). Synthetic inertias are gaining 

popularity as they supplement conventional 

inertia in supporting network’s frequency 

stability. Thus, purchasing a fixed quantity of 

synthetic inertia and applying it to the 

network is not effective and economical as the 

system’s inertia may vary over a wide range 

in a year. Undetermined low inertia 

conditions and inadequate auxiliary 

frequency support services could pose a 

serious risk to the reliability and security of 

the network. For this reason, prior knowledge 

of the system inertia is crucial so that a 

minimum level of inertia can be planned, 

determined and purchased well in the time 

ahead to maintain stability, security, and 

reliability of the network following 

contingencies events. A network’s minimum 

level of inertia should always be maintained 

to ensure the secure operation of the network 

(Heylen et. al., 2020). Therefore, 

understanding inertia values of the network 

for the time ahead gives the assurance of 

avoiding possible risks of instability in the 

power system. In addition, to maintain the 

network’s minimum level of inertia, PSOs can 

schedule fast-frequency response services and 

appropriate reserves to provide appropriate 
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responses to the network under contingencies 

(Makolo, et. al., 2021b).  

Consequently, appropriate methods to 

precisely forecast power system’s inertia 

values are crucial to avoid threats related with 

extended operating times of the network with 

low inertia. To achieve this goal, this research 

proposes an algorithm for short- and long-

range forecasts of network inertia. The 

proposed method introduces an improved 

ARIMA ( 𝒾 -ARIMA) algorithm. The 𝒾 -

ARIMA uses the seasonality and robust 

periodic patterns of past time series data to 

short- and long-range forecast future inertia 

values. 𝒾-ARIMAmethod is tuned for optimal 

values of moving observant predictor 𝔓 , 

periodicity and seasonality factor 𝓈  and 

smoothing factor 𝓃 , collectively giving the 

best forecasts with competitive accuracy. The 

introduced 𝔓, 𝓈, and 𝓃 factors will be further 

discussed in subsequent sections. Rigorous 

evaluation and tests of the method, which are 

done on the New Zealand data, reveal the 𝑖-
ARIMA to be quicker, more reliable, more 

accurate, and better than other forecasting 

methods.  

 

Existing literature analysis 

With the integration of CBS into the power 

system, inertia estimate techniques have 

gained popularity. Numerous methods for 

inertia estimation have been thoroughly 

studied in the literature. Nonetheless, there 

hasn't been much discussion of inertia 

forecasting in this line of inquiry. Thus, it is 

critical to comprehend the significance of 

inertia estimation in power systems at this 

stage. It is clear that the power system inertia 

is reduced when stochastic non-synchronous 

generation units are substituted for 

conventional synchronous power plants. This 

tendency weakens the power system's 

frequency stability. Inertia estimation 

algorithms are necessary for frequency 

stability. It is essential to understand the 

network’s inertia value to schedule power 

reserves and deploy quick frequency support 

devices to ensure frequency stability in the 

grid (Heylen et. al., 2020). 

Plenty of techniques are proposed in the 

literature for power system inertia 

estimations. Established on the time horizon 

of interest, the inertia estimation techniques 

can be classified as offline, online and 

forecast techniques. These estimation 

methods can further be grouped into two main 

groups: disturbance data-based and non-

disturbance data-based approaches. Within 

the disturbance data-based group, some 

methods are based on swing equations, and 

others are based on electromechanical wave 

theory. Most of the disturbance-based 

techniques are offline as they are post-mortem 

approaches (Cao et. al., 2016). For non-

disturbance methods, some methods use the 

probing signal technique, and others use the 

ambient signal approach. Most later 

techniques are used in the online (real-time) 

and forecast (time-ahead) inertia estimation 

approaches. Most of the proposed techniques 

employing the swing equation approach 

estimate the inertia by monitoring the 

dynamics of active power and the resulting 

frequency responses. Other approaches link 

inertia and the generator's rotor angle together 

with the power mismatch in the grid. 

The following offline inertia estimation 

techniques, which are mainly used for 

analytical and post-event assessment of the 

inertia level in the systems, are analysed. A 

switching Markov Gaussian model, which is 

a statistical-based approach, is developed in 

(Cao et. al., 2016). In this approach, historical 

time-series data are used to evaluate the 

network’s inertia. The methods developed in 

(Chassin et al., 2005; Zografos et. al., 2020), 

which are based on the regression 

methodology, use real-time data of online 

load and generation mix for network’s inertia 

estimation. A technique to calculate the 

inertia of the Great Britain (GB) network by 

considering the magnitude of the disturbance 

and frequency response in the network is 

shown in (Ashton et. al., 2014). On the other 

hand, the method presented in (Inoue et. al., 

1997) uses transients of frequency measured 

during an event in connection with using a 

swing equation to estimate the inertia of the 

power system. However, the method is 
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affected by noise content in the measured 

frequency. The methods proposed in 

(Lugnani et. al., 2020) and (Tuttelberg et. al., 

2018) use autoregressive moving average 

exogenous (ARMAX) models to estimate the 

system inertia. 

Online or real-time inertia estimation 

techniques aim to get an immediate estimate 

of the inertia based on instantly accessible 

measurements of the system variables. 

Several different approaches are proposed in 

the body of literature. For instance, a method 

to estimate inertia in real time using data of 

the active power balance from a wide-area 

power system’s measurement for large 

disturbances is presented in (Sun et. al., 

2019). Another method for online inertia 

estimation using an injection of a 

supplementary probing indicator is proposed 

in (Zhang & Xu, 2017). In ref. by (Yang et. 

al., 2020), a recursive adaptive subspace 

identification algorithm is proposed to track 

real-time oscillation modes. The algorithm 

uses ambient data obtained from phasor 

measurement units (PMU) for inertia 

estimation of different areas of an 

interconnected network. Another ambient 

data-based online method for inertia 

estimation is proposed in ref. by (Tuttelberg 

et. al., 2018).  

Generally, the post-mortem offline inertia 

estimation approaches have three pitfalls, as 

specified in (Heylen et. al., 2020). First, the 

techniques depend on network events to 

estimate the system inertia. This dependency 

must accurately understand the events' sizes, 

which is difficult. On top of this, not all events 

in the power system are suitable for inertia 

estimation and analytical purposes in the 

network (Ashton et. al., 2013; Makolo et. al., 

2024). Second, the techniques also suffer the 

time determination problem for the event's 

onset. This is an important feature, as stated 

in (Wang et. al., 2020). Lastly, RoCoF is 

another challenge facing the accuracy of post-

mortem inertia estimation techniques. The 

frequency oscillations and noise content after 

an event make it difficult to obtain error-free 

RoCoF (Tavakoli et. al., 2012). 

All the offline and online methods for inertia 

estimation cannot adequately protect the low-

inertia network from instabilities when 

contingencies happen. For instance, offline 

techniques provide a posteriori information, 

which can only be useful in scheduling stages 

but not for control actions in real-time (Carlini 

et. al., 2021). Yet, online methods for inertia 

estimation provide real-time estimates of 

inertia in the network. However, they are 

impractical for power system protection as the 

estimations are provided in real time. Given 

the speed of faults in the network, there is not 

enough time to communicate the estimated 

inertia to the PSOs and immediately take 

action to control the network in cases of low 

inertia values (Milano et. al., 2018; Makolo, 

et. al., 2021a; Heylen et al., 2020). This is 

because there is not enough time interval to 

plan for fast-frequency support facilities as 

the responses are so quick. The only solution 

is to accurately forecast network’s inertia 

values. Prior knowledge of system inertia and 

behaviour will allow PSOs to have a 

reasonable time interval for planning 

network’s control, support, and protection 

(Du & Matevosyan, 2017). 

Given the risks of unanticipated low network 

inertia conditions and the limited time for 

taking action after power imbalances in the 

network, there is an increasing need to 

forecast and anticipate the values of the inertia 

constant in the modern network (Makolo, et. 

al., 2021b; Makolo, et. al., 2021a; Wang et. 

al., 2020; Ujjwol et. al., 2017; Prakash et. al., 

2018). Network inertia forecasting will 

anticipate when the grid will likely be at low 

inertia risk. In this way, appropriate measures 

can be taken well in advance to protect 

network stability (Makolo, et. al., 2021b; 

Heylen et. al., 2020; Ujjwol et. al., 2017). 

Unlike offline and online inertia estimations, 

this area of inertia forecasting has not been 

intensively researched. There are only a few 

proposed methods to forecast the inertia 

constants in power systems. Some of the 

methods are discussed in the subsequent 

paragraph. 

Du & Matevosyan, (2017) proposes a new 

tool to forecast system inertia and evaluate the 
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adequacy of frequency response reserves. In 

this literature, the need for forecasting 

network inertia as an important characteristic 

to evaluate the operational impact of non-

synchronous generating units on a power grid 

is justified. Besides, a short-term rotating 

energy forecast using a decomposable time 

series model approach is proposed in 

(Gonzalez-Longatt et. al., 2020). Also, in 

(Prakash et. al. (2018), a two-stage stochastic 

generation including a primary frequency 

response planning model is presented to 

predict the network inertia for primary 

frequency response suitability over stochastic 

wind generation. Besides, an artificial 

intelligence-based technique is proposed in 

(Paidi et. al., 2020). In this technique, inertia 

in a power system with a high penetration of 

wind power plants is forecasted. 

Yet, the proposed inertia forecasting methods 

discussed in the previous paragraphs have 

some limitations. The method proposed in 

(Carlini et. al., 2021) focuses more on online 

inertia estimation, enhanced by a prediction 

method for a very short time ahead. System 

monitoring data can be used to improve the 

method for long-range forecasting of inertia 

values in the network. Furthermore, the 

method proposed by (Prakash et. al., 2018) 

fails to justify the accuracy of the claimed 

one-day prediction on system inertia. Again, 

the one-hour and three-hour time-ahead 

predictions of inertia in (Gonzalez-Longatt et. 

al., 2020; Du & Matevosyan, 2017) are 

relatively short for reliable planning, 

especially for stability control in large power 

systems comprising large power plants. Large 

power plants may take a reasonably long time 

to start and synchronise in the network. It is 

possible to extend the forecasting to a longer 

time ahead. Moreover, the method proposed 

in (Paidi et. al., 2020) is based only on 

simulation data. Its application accuracy on 

real network data is not justified. There is a 

need to justify the proposed method based on 

real network data. 

 

Novelties and organization of the paper 

The contributions of the method proposed in 

this paper are threefold. Firstly, the proposed 

method introduces the 𝒾 -ARIMA algorithm 

that uses resilient periodic patterns and past 

time series data seasonality to long-range 

forecast inertia values. Secondly, the method 

uses moving observant predictor 𝔓  to 

improve the accuracy of the short-range 

forecasts. Lastly, it combines optimal values 

of moving observant predictor 𝔓, periodicity 

and seasonality factor 𝓈 and smoothing factor 

𝓃  at different lags 𝓀 , giving the best long-

range inertia forecasts with competitive 

accuracy. 

The rest of this paper is organised as follows: 

Section 2 presents the theoretical background 

of this research work. The role of inertia in 

modern network stability, the impact of CBS 

and the role of synthetic inertia are discussed 

in this section. Besides, an overview and 

application of the ARIMA model in 

forecasting are presented. Section 3 explains 

the steps of the method proposed. The steps 

include model identification, inertia 

extraction, tracking, and forecasting. 

Moreover, the New Zealand network data is 

used to test the applicability of the proposed 

technique in section 4. The performance 

analysis of the technique is examined in 

section 5. Eventually, section 6 presents the 

conclusion of the discussion. 

 

CONCEPTUAL FRAMEWORK 

The role of inertia in power systems 

Inertia is an important property in maintaining 

the stability of the power system. 

Conventionally, the turbine-synchronous 

generator rotating mass is represented as 

inertia that is well defined by the swing 

equation as given in (1) (Makolo, Zamora, et 

al., 2021b). 

𝐽
𝑑

𝑑𝑡
𝜔𝑚(𝑡) =  𝑇𝑚(𝑡) − 𝑇𝑒(𝑡) (1) 

where 𝐽 represents the total rotating masses’ 

moment of inertia, 𝜔𝑚  represents the 

mechanical rotational speed, while 𝑇𝑚 and 𝑇𝑒 

represent the mechanical and 

electromagnetic torques, respectively. By 

converting the torques into power, the swing 

equation can be written in terms of power and 

frequency as in (2) (Heylen et al., 2020): 
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𝐽𝜔𝑒(𝑡)

𝓅2
𝑑

𝑑𝑡
𝜔𝑒(𝑡) =  𝑃𝑚(𝑡) − 𝑃𝑒(𝑡) (2) 

where 𝜔𝑒(𝑡) is the instantaneous electrical 

rotor speed, i.e., 𝜔𝑒(𝑡) = 2𝜋𝑓(𝑡) , while 

𝑓(𝑡)  is the instantaneous frequency of the 

generator terminal voltage, and 𝓅 is the pole 

pair number of the generator. The kinetic 

energy (𝐾𝐸)  of the generator rotating 

masses is given by (3). 

𝐾𝐸 =  
𝐽𝜔𝑒,0

2

2𝓅2
 (3) 

where 𝜔𝑒,0  =  2𝜋𝑓0  is the rated electrical 
rotor speed of the generator at the rated 
frequency 𝑓0 of the power system.  
The stored kinetic energy is an important 

property of the power system. During the 

power imbalances in the power system, the 

stored KE is either absorbed or released by the 

generator to counteract the power imbalance. 

By so doing, the speed and frequency are 

instantly controlled within permissible 

bounds depending on the size of the power 

imbalance. This process is referred to as the 

generator’s inertial response, which plays an 

important role in reducing the system RoCoF. 

Low values of RoCoF give the generator’s 

governor the necessary time needed to 

regulate the turbine power to restore the 

power balance. When the KE is divided by the 

generator’s nominal power (𝑆𝑛 ), the inertia 

constant 𝐻 can be obtained as in (4). 

𝐻 = 
𝐾𝐸

𝑆𝑛
= 
𝐽𝜔𝑒,0

2

2𝑝2𝑆𝑛
 (4) 

When the rotor speed 𝜔𝑒(𝑡) = 2𝜋𝑓(𝑡)  is 

different from the rated rotor speed 𝜔𝑒,0  =
 2𝜋𝑓0, (1) can be written as in (5). 

2𝐻
𝑑

𝑑𝑡

𝑓(𝑡)

𝑓0
= 
𝑃𝑚(𝑡) − 𝑃𝑒(𝑡)

𝑆𝑛
 (5) 

For the system with multi-generators, the 

swing equation of the system can be written 

in terms of total system inertia 𝐻𝑠𝑦𝑠  and 

centre of inertia frequency, 𝑓𝐶𝑂𝐼  as in (6) 

(Paidi et. al., 2020). 

2𝐻𝑠𝑦𝑠
𝑑

𝑑𝑡

𝑓𝐶𝑂𝐼 (𝑡)

𝑓0
= 
𝑃𝑚(𝑡) − 𝑃𝑒(𝑡)

𝑆𝑛
 (6) 

where the total system inertia 𝐻𝑠𝑦𝑠 is given 

as in (7). 

𝐻𝑠𝑦𝑠 = 
∑ 𝐻𝑖 × 𝑆𝑛,𝑖
𝑁
𝑖=1

∑ 𝑆𝑛,𝑖
𝑁
𝑖=1

 (7) 

The centre of inertia frequency 𝑓𝐶𝑂𝐼 is given 

by (8). 

𝑓𝐶𝑂𝐼 = 
∑ 𝐻𝑖 × 𝑓𝑖
𝑁
𝑖=1

∑ 𝐻𝑖
𝑁
𝑖=1

 (8) 

The impact of renewables and the role of 

synthetic inertia in modern power systems 

In the case of networks with high share of 

converter-based sources, the conventional 

synchronous generators are replaced, and 

hence, inertia is reduced in power systems 

(Ratnam et. al., 2020). To obtain the dynamic 

values of inertia, the supervisory control and 

data acquisition (SCADA) system needs to 

provide the timely status of the synchronous 

generators in the system. By so doing, 

equation (7) can be modified to update the 

amount of network inertia. Equation (7) needs 

to be appropriately modified to account for 

the non-synchronous generators that do not 

add up to the KE of the system (Donnini et al., 

2020). To modify (7), (Donnini et. al., 2020) 

introduces a factor 𝑆𝑅  that accounts for the 

total amount of active power injected by each 

RE plant in the network that doesn’t 

contribute to the total inertia of the network. 

Employing 𝑆𝑅 for 𝑁 number of RE plants in 

the network, equation (7) can be re-written in 

the form as presented in (9). 

𝐻𝑠𝑦𝑠
𝑅𝐸 = 

∑ 𝐻𝑖 × 𝑆𝑛,𝑖
𝑁
𝑖=1

∑ 𝑆𝑛,𝑖
𝑁
𝑖=1 + ∑ 𝑆𝑅,𝑖

𝑁
𝑖=1

 (9) 

As a result of reduced conventional inertia 

𝐻𝑠𝑦𝑠  of the network due to penetration of 

CBS, different controls of different energy 

storage systems and other CBS for frequency 

support have been gaining popularity in 

power systems. Supercapacitors and battery 

storage, for instance, have been used for fast 

frequency response, frequency support and 

inertia response. On the other hand, wind 

turbines have been applied for frequency 

support in terms of synthetic inertia and fast 

frequency support (Kosmecki et. al., 2021). It 

should be noted that fast frequency response 

(FFR) differs from synthetic inertia in the 
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concept that FFR is applied during frequency 

deviation. In contrast, for synthetic inertia, the 

controller response is linked to the RoCoF to 

support a network with low inertia values 

(Donnini et al., 2020). 

 

THE PROPOSED METHOD TO 

FORECAST INERTIA IN POWER 

SYSTEMS 

 

Method overview 

The proposed inertia forecasting method is an 

extension of the previously proposed short 

range inertia prediction method in (Makolo et. 

al., 2021). The proposed method is 

subdivided into three main algorithms: power 

system model identification, inertia extraction 

and inertia tracking and forecasting. The 

algorithms are interconnected, from power 

model identification to inertia forecasting. 

Error! Reference source not found.Error! 

Reference source not found.(a) and (b) show 

in detail the generalised flow block diagrams 

of model identification and inertia extraction, 

respectively, while Error! Reference source 

not found. shows the inertia forecasting 

algorithm. 

 

 

Figure 1: Algorithm flow diagrams of: (a) 

network model identification and (b) inertia 

extraction 

 

Figure 2: Flow diagram of inertia forecasting 

algorithm 

Model identification 

Given the network measurements for the 

input parameter 𝓊𝑘  ∈  ℝ
𝑚  and the output 

𝓎𝑘  ∈  ℝ
𝑙  generated by the unknown 

combined system of order 𝑛, the system can 

be represented by the state-space equation 

(10). 

𝓍𝑘+1  = 𝐴𝓍𝑘 + 𝐵𝓊𝑘 +𝓌𝑘 

𝓎𝑘 = 𝐶𝓍𝑘 + 𝐷𝓊𝑘 +𝓋𝑘  (10) 

where 𝓊𝑘  and 𝓎𝑘  represent the inputs and 

outputs of the system, respectively, 𝓍𝑘 denote 

the states, while  𝓌𝑘 and 𝓋𝑘 are the process 

and measurement noises. The coefficients 

𝐴, 𝐵, 𝐶, 𝐷 denote the system’s matrices. 

Considering the system's noise, the combined 

(deterministic-stochastic) subspace 

identification algorithm is employed to 

compute the state-space model from the 

network's input-output data. A linear time-

invariant combined with a deterministic-

stochastic subspace can represent a system. 

Matrix 𝐴  in a combined deterministic-

stochastic system specifically denotes a 

dynamic system matrix as completely 

characterised by its eigenvalues (Isermann & 

Münchhof, 2010). 

When a system has available (measured) 

signals 𝓊𝑘  and 𝓎𝑘  and 𝓋𝑘and 𝓌𝑘  unknown 

disturbances, the system can be split into a 

deterministic and stochastic subsystem by 

splitting the state (𝓍𝑘) and output (𝓎𝑘) in a 

deterministic (•𝑑)  and stochastic (•𝑠) 
components as in (11).  

𝑥𝑘  =  𝑥𝑘
𝑑 + 𝑥𝑘

𝑠 
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𝓎𝑘 = 𝑦𝑘
𝑑 + 𝑦𝑘

𝑠 (11) 

The deterministic state (𝑥𝑘
𝑑) and output (𝑦𝑘

𝑑) 

follow from the deterministic subsystem, 

which describes the influence of the 

deterministic input (𝓊𝑘) on the deterministic 

output as shown in (12). 

𝑥𝑘+1
𝑑 =  𝐴𝑥𝑘

𝑑 +  𝐵𝓊𝑘 

𝓎𝑘
𝑑 = 𝐶𝑥𝑘

𝑑 + 𝐷𝓊𝑘 (12) 

The stochastic state (𝑥𝑘
𝑠) and the output (𝑦𝑘

𝑠) 

follow from the stochastic subsystem, which 

describes the influence of the noise sequences 

(𝓌𝑘 ) and (𝓋𝑘 ) on the stochastic output as 

depicted in (13). 

𝑥𝑘+1
𝑠 =  𝐴𝑥𝑘

𝑠 + 𝓌𝑘 

𝓎𝑘
𝑠 = 𝐶𝑥𝑘

𝑠 +𝓋𝑘 (13) 

The deterministic and stochastic subsystems 

may have completely decoupled input-output 

dynamics. For this reason, the block Hankel 

matrices, which relate the measured input-

output dynamic data, are defined as in (14) 

(Zhou et. al., 2006). 

𝑈𝒫  ≝  𝑈0|2𝑖−1  

≝  (

𝑢0 𝑢1 𝑢2 … 𝑢𝑗−1
𝑢1 𝑢2 𝑢3 … 𝑢𝑗
…
𝑢𝑖−1

…
𝑢𝑖

…
𝑢𝑖+1

…
…

…
𝑢𝑖+𝑗−2

) 

∈  ℝ𝑙𝑖×𝑗 

 

𝑈𝒻 ≝ 𝑈𝑖|2𝑖−1  

≝  (

𝑢𝑖 𝑢𝑖+1 𝑢𝑖+2
𝑢𝑖+1 𝑢𝑖+2 𝑢𝑖+3

…
…

𝑢𝑖+𝑗−1
𝑢𝑖+𝑗

   …   …      …     … …
𝑢2𝑖−1 𝑢2𝑖 𝑢2𝑖+1 … 𝑢2𝑖+𝑗−2

) 

∈  ℝ𝑙𝑖×𝑗 
 

𝑈𝒫
+  ≝  𝑈0|𝑖

≝

(

 
 

𝑢0
𝑢1
…

𝑢1
𝑢2
…

𝑢2
𝑢3
…

…
…
…

𝑢𝑗−1
𝑢𝑗
…

𝑢𝑖−1 𝑢𝑖 𝑢𝑖+1 … 𝑢𝑖+𝑗−2
𝑢𝑖 𝑢𝑖+1 𝑢𝑖+2 … 𝑢𝑖+𝑗−1)

 
 
 

∈  ℝ𝑙(𝑖+1)×𝑗 
 

𝑈𝒻
− ≝ 𝑈𝑖+1|2𝑖−1  

≝  (

𝑢𝑖+1 𝑢𝑖+2 𝑢𝑖+3 … 𝑢𝑖+𝑗
… … … … …

𝑢2𝑖−1 𝑢2𝑖 𝑢2𝑖+1 … 𝑢2𝑖+𝑗−2
) 

 ∈  ℝ𝑙(𝑖−1)×𝑗 (14) 

The subscripts in 𝑈0|2𝑖−1 , 𝑈0|𝑖 , 𝑈𝑖+1|2𝑖−1 

denote the first and last element of the first 

column in the input block Hankel matrix. 

The subscripts “𝒫” and “𝒻” stand for “past” 

and “future” respectively. On the other 

hand, 𝑈𝒫
+ and 𝑈𝒻

− are defined by shifting the 

border between past and future one block 

row down. The superscripts “+” and “-” 

stand for “add one block row” and “delete 

one block row”, respectively. The output 

block Hankel matrices 𝑌𝒫 , 𝑌𝒻 , 𝑌𝒫
+ and 𝑌𝒻

− 

are defined similarly to the input block 

Hankel matrices. Likewise, the block 

Hankel matrices 𝑌0|2𝑖−1
𝑑  and 𝑌0|2𝑖−1

𝑠  are also 

defined similarly using the deterministic and 

stochastic output matrices, respectively. The 

block Hankel matrices consisting of inputs 

and outputs as 𝑊0|𝑖−1 is defined in (15). 

𝑊0|𝑖−1  ≝  (
𝑈0|𝑖−1
𝑌0|𝑖−1

) 

= (
𝑈𝒫
𝑌𝒫
) 

= 𝑊𝒫 (15) 

Similarly, 𝑊𝑝
+ = (

𝑈𝒫
+

𝑌𝒫
+). 

The state sequence related to the Hankel 

matrices of the system is defined as (16). 

𝑋𝑖  ≝  (𝑥𝑖    𝑥𝑖+1  …   𝑥𝑖+𝑗−2   𝑥𝑖+𝑗−1)    

∈  ℝ𝑛×𝑗   (16)
 

Likewise, the deterministic state sequence 

𝑋𝑖
𝑑  and stochastic state sequence 𝑋𝑖

𝑠  are 

defined as (17). 

𝑋𝑖
𝑑  ≝  (𝑥𝑖

𝑑      𝑥𝑖+1
𝑑  …   𝑥𝑖+𝑗−2

𝑑      𝑥𝑖+𝑗−1
𝑑 )  

∈  ℝ𝑛×𝑗 

𝑋𝑖
𝑠  ≝  (𝑥𝑖

𝑠      𝑥𝑖+1
𝑠  …   𝑥𝑖+𝑗−2

𝑠      𝑥𝑖+𝑗−1
𝑠 ) 

∈  ℝ𝑛×𝑗  (17)
 

Hankel block matrices allow calculation of 
the row space of a Kalman filter state 
sequence and the column space of the 
extended observability matrix Γ𝑖  right from 
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the input-output data (Zhou et al., 2006). 
Therefore, the oblique projection 𝒪𝑖 is 
described as in (18). 

𝒪𝑖  ≝  𝑌𝒻 𝑈⁄ 𝒻
 𝑾𝒫 (18) 

However, the matrix 𝒪𝑖 is equal to the product 

of the extended observability matrix Γ𝑖  and 

the Kalman filter state sequence �̃�𝑖  as 

depicted in (19) (Makolo, et. al., 2021a) 

(Isermann & Münchhof, 2010).  

𝒪𝑖 = Γ𝑖. �̃�𝑖 (19) 
Besides, the Kalman filter state sequence �̃�𝑖 
is specified as in (20). 

�̃�𝑖 ≝  �̂�𝑖[�̂�0] (20) 

where �̂�0 = 𝑋𝒫
𝑑 ∕𝑈𝒻  𝑼𝒫 . Also, the 

observability matrix Γ𝑖  is given by Γ𝑖 =

 𝑊1
−1𝑈1𝑆1

1

2. 𝑇. 

The part of the state sequence �̃�𝑖 that lies in 

the column space of 𝑊2  can be recovered 

from (21). 

�̃�𝑖 𝑊2 = 𝑇
−1𝑆1

1
2𝑉1

𝑇 (21) 

It is clear that the Kalman state sequence can 

also be defined by (22), which can simplify 

the model identification procedure. 

�̃�𝑖 = Γ𝑖
†𝒪𝑖  (22) 

The goal of the model identification 

procedure is to find an optimal model in 

which the input-output data approximates the 

process under consideration. To do this, the 

prediction of the future outputs (𝑌𝒻 ) can be 

achieved using the information obtained from 

the past (𝑾𝒫) and the knowledge of the inputs 

that will be presented to the system in the 

future (𝑈𝒻 ). Predicting future outputs (𝑌𝒻) 

helps forecast other network parameters. 

Inspired by the linearity approximation of the 

system, the past (𝑾𝒫) and the future inputs 

(𝑈𝒻) can be combined linearly to predict the 

future outputs (𝑌𝒻). If the linear combination 

is denoted as 𝐿𝒫, the optimal combination of 

the past to predict the future is 𝐿𝒫 . 𝑊𝒫, which 

is exactly equal to the oblique projection 𝒪𝑖 =
 𝐿𝒫 .𝑊𝒫 (Isermann & Münchhof, 2010). 

To determine states �̃�𝑖 from the system data 

collected, the oblique projection in (23) can 

be used (Zhou et. al., 2006). 

𝒪𝑖+1 = 𝑌𝒻
− ∕U𝒻

− 𝑊𝒫
+ 

𝒪𝑖+1 = Γ𝑖+1. �̃�𝑖+1 (23) 

In this way, �̃�𝑖  and �̃�𝑖+1  can be obtained. 

However, this new Kalman filter sequence 

�̃�𝑖+1  has a different initial state from the 

sequence �̃�𝑖. In this way, matrices 𝐴, 𝐵, 𝐶 and 

𝐷 can be finally obtained as of the set of linear 

equations of (24). 

(
�̃�𝑖+1
𝑌𝑖|𝑖

) =  (
𝐴 𝐵
𝐶 𝐷

) (
�̃�𝑖
𝑈𝑖|𝑖
) + (

𝜌𝜔
𝜌𝜐
) (24) 

where 𝜌𝜔  and 𝜌𝜐  are Kalman filter residuals 

associated to process and measurement noises 

of the system. The discussion is mainly based 

on the system matrix 𝐴  as it describes the 

system’s dynamics as characterized by its 

eigenvalues. Therefore, the system modes 

have to be obtained by calculating the 

eigenvalues of the matrix 𝐴 , which are the 

system’s poles. 

Online inertia extraction and tracking 

An interesting interpretation of system 

dynamic behaviour can be obtained by 

analysing the eigenvalues of a dynamic 

matrix 𝐴  of the identified power system 

model. The system matrix 𝐴 is of interest as it 

describes the system’s dynamics as 

characterized by its eigenvalue structure. The 

dynamic modes of the system must be found 

(Makolo, et. al., 2021a) to analyse the 

system’s dynamics. The next step is to obtain 

the eigenvalues of matrix 𝐴 , which are the 

system’s poles. 

Considering that the input 𝓊𝑘  is always the 

same during the experiment, the Kalman 

residual process noise 𝜌𝜔  in (24) can be 

estimated to a zero mean, and the block 

Hankel matrix 𝑈𝑖|𝑖 can asymptotically resolve 

to zero. In this way, the dynamic matrix 𝐴 in 

(24) can be represented by an estimated 

general form of a dynamic system as (25). 

  �̃�𝑖+1
′  =  𝐴′�̃�𝑖

′ (25) 

where �̃�𝑖+1
′  and �̃�𝑖

′  represent estimated 

Kalman filter state sequences, and 𝐴′ 
represents the estimated dynamic state matrix. 

If it is assumed that matrix 𝐴′  is 

diagonalisable with eigenvalue 

decomposition, Kalman filter sequences can 

be estimated as in (26). 
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�̃�𝒊
′  =  𝚽𝚲�̃�𝒎 (26) 

where 𝚽 is a set of functions obtained from 

the system data, which physically represent 

standing oscillations of the system,  �̃�𝒎 

represents row vectors containing the 

temporary coefficient evaluated at each 

observation and 𝚲 = 𝑑𝑖𝑎𝑔[𝜆1   𝜆2   …  𝜆𝑚] ∈
 ℝ𝑚×𝑚  is a diagonal matrix consisting of 

empirical Ritz eigenvalues 𝜆𝑗  of dynamic 

matrix 𝑨′  (Barocio et. al., 2015). Therefore, 

the estimated Kalman sequence matrix �̃�𝒊
′ can 

be expanded in a linear combination of modal 

components (27). 

�̃�𝒊
′ ≈ ∑𝝓𝒋

𝒎

𝒋=𝟏

𝜆𝑗�̃�𝒋(𝑡) (27) 

where �̃�𝒋  contains the temporal amplitudes, 

𝝓𝒋  contains the dynamic modes, while 𝜆𝑗 

contains the associated eigenvalues of 

dynamic matrix 𝑨′  of the system model. In 

this way, eigenvalues and vectors of the state 

matrices can then be found.  
Since system dynamics depend on eigenvalue 
and eigenvector, any change in dynamic 
parameters can indirectly change the 
eigenvalue and eigenvector through the 
Kalman state sequence matrix. By 
determining the modes of the system by 
calculating the eigenvalues of the dynamic 
matrix 𝑨′, parameters of the system, such as 
inertia, can be determined by connecting the 
eigenvalue of the dynamic matrix 𝑨′  with a 
linearized form of the swing equation (28). 

2𝐻Δ�̇� + 𝐷Δ𝜔 = − 𝑃𝑒 (28) 
The related transfer function of the swing 

equation is given in (29). 

𝐺(𝑠) =
∆𝜔

∆𝑃𝑒
 ≈ − 

1

2𝐻𝑠 + 𝐷
 (29) 

When the system’s output is presented at a 

continuous sampling rate ∆𝑡 , the sampled 

signal is represented as per (30). 

𝑦𝑗(𝑘) =  ∑𝑅𝑖𝑧𝑖
𝑘

𝑛

𝑖=1

 (30) 

where 𝑘  shows the samples, and 𝑧𝑖 =
exp (𝜆𝑖∆𝑡)  presents the discretized model 

variable 𝑧(𝑡) and 𝜆 = 𝜎 + 𝑗𝜔. These are the 

modes that represent the system. The set of 

snapshot matrix of 𝑨′  representing the 

dynamic modes of the system is given by (31) 

(Barocio et al., 2015). 

𝑋 =  [∆𝑓  ∆𝑃𝑒]
𝑇  ∈  ℝ2×𝑁 (31) 

The snapshot matrix (31) can further be 

evaluated as presented in (Makolo, et. al., 

2021a) by means of a linear combination 

factor (LCF) 𝛼𝑖 to obtain (32). 
2𝐻𝛼𝑖,∆𝑓𝜆𝒷 =  −𝛼𝑖,∆𝑃𝑒𝒷𝑖𝜔0 (32) 

in which 𝒷𝑖  represents the primary value 

factor corresponding to the 𝑖𝑡ℎ eigenvalue. To 

estimate the inertia, the deviations in power 

and frequency response deviations are 

recorded as network’s input (𝓊𝑘) and output 

(𝓎𝑘)  regarding the sampled data. The 

dynamic modes relating to eigenvalues and 

eigenvectors are then extracted to build the 

snapshot matrix. Thus, the effective inertia 𝐻𝑒 

can be determined by solving equation (32). 

Given that the equation is linear and lacks a 

rotor speed derivative, the proposed method is 

well-suited to handling large-scale power 

systems with high dimensionality. 

 

Inertia tracking and forecasting 

From the previous subsection, the 𝐻𝑒  of the 

network is extracted and stored in a dataset 

with a time interval of 10 s. The stored inertia 

data create a historical time-series data set. 

Historical data can potentially be used to form 

recognizable patterns, such as trends and 

seasonal events, which are important inputs 

for long-range forecasting. An appropriate 

time-series dynamic model is fitted in the 

stored historical inertia data set. The obtained 

fitted dynamic model is then used to generate 

forecasts of future observations. Figure 1 

shows the concept of moving observant 

predictor 𝔓 for a dynamic forecasting model 

to forecast future inertia values.  
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Figure 1: Diagram showing moving observant predictor 𝕻 in the dynamic forecasting model. 

Inertia tracking 

A time-series data-based ARIMA (p,d,q) 

process at time 𝑇 + 𝜏  is expressed as (33) 

(Montgomery et. al., 2015).  

𝑦𝑇+𝜏 =  𝛿 + ∑𝜙𝑖

𝑝+𝑑

𝑖=1

𝑦𝑇+𝜏−𝑖

+𝜀𝑇+𝜏 −∑𝜃𝑖𝜀𝑇+𝜏−𝑖

𝑞

𝑖=1

 (33)

 

here, δ is a data initialization constant, 𝜙𝑖 
represents the correlation constant between 

adjacent datasets, 𝜀𝑇+𝜏  denotes the forecast 

error at lead time 𝜏 , and 𝜃𝑖  is the error 

correction factor at lead time 𝜏. Considering 

a partitioned MA representation of (33), 

equation (34) is obtained. 

𝑦𝑇+𝜏 = 𝜇 +∑𝜓𝑖

𝜏−1

𝑖=0

𝜀𝑇+𝜏−𝑖

+∑𝜓𝑖𝜀𝑇+𝜏−𝑖

∞

𝑖=𝜏

  (34)

 

The component ∑ 𝜓𝑖
𝜏−1
𝑖=0 𝜀𝑇+𝜏−𝑖 represents the 

future errors, while ∑ 𝜓𝑖𝜀𝑇+𝜏−𝑖
∞
𝑖=𝜏  represents 

the present and past errors. As the extraction 

of the inertia is done in the network, the 

moving average 𝑀𝐴(𝑞 + 1)  property of the 

ARIMA model presented in (36) is a powerful 

property that can be used to track the 

extracted inertia values. As the inertia series 

extracted is non-invertible, the maximum 

likelihood estimates move with the qth-order 

of the MA component, enhancing tracking of 

the time-changing inertia in the network. The 

extracted inertia values are compared with the 

available actual inertia values of the network. 

Short-range forecasting 

On the other side, when the disturbances are 

assumed to have mean zero and independent 

on different lags, the forecast estimation at the 

time ahead 𝜏  by considering the moving 

observant predictor 𝔓  is depicted by (35) 

(Isermann & Münchhof, 2010). 

 (�̂�𝑇+𝜏(𝑇))
𝔓
  =  (∑𝜓𝑖𝜀𝑇+𝜏−𝑖

∞

𝑖=𝜏

)

𝔓

   (35) 

where 𝐸[𝑦𝑇+𝜏|𝑦𝑇 , 𝑦𝑇−1, .  .  . ] =

 {
0          𝑖𝑓 𝑖 < 𝜏
𝜀𝑇+𝜏−𝑖   𝑖𝑓 𝑖 ≥ 𝜏

 

Then, the improved forecast error when 𝔓 is 

considered around the historical data is 

calculated as in (36). 

(𝑒𝑇(𝜏))
𝔓
= (∑𝜓𝑖

𝜏−1

𝑖=0

𝜀𝑇+𝜏−𝑖)

𝔓

(36) 

For a linear combination of random 

disturbances, 𝐸[𝑒𝑇(𝜏)] = 0 . Therefore, 

equation (37) is obtained.  

=  (𝜎2)𝔓∑(  𝜓𝑖
2)
𝔓

𝜏−1

𝑖=0

 

=  (𝜎2)𝔓(𝜏),     𝜏 = 1, 2, … (37)

 

The forecast error variance gets bigger with 

increasing the forecast lead times 𝜏 . This 

increase is expected and makes sense as 

uncertainty increases for the forecasts further 

into the future. 
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Long-range forecasting 

The property that time-series data have strong 

periodic patterns and seasonality can be used 

as a crucial input to improve the ARIMA 

model for long-range forecasting. The 

improvement is done by including an additive 

model and exponential smoothing, which are 

linked by a moving observant predictor 𝔓 at 

different lags 𝓀 for 𝑛 samples of the dataset 

before and after the time base. For this case, 

data 𝑦𝑡 can be represented using the additive 

model as in (38). 

𝑦𝑡 = 𝑆𝑡 + 𝑁𝑡 (38) 

where 𝑆𝑡 is a deterministic component with 

periodicity and seasonality factor 𝓈  in the 

time-series dataset, while 𝑁𝑡 is a component 

that may be modelled as the ARIMA 

process. Equation (38) can further be 

modified into (39). 

𝑤𝑡 = (1 − 𝐵
𝓈)𝑁𝑡 (39) 

where 𝑤𝑡  is a process with predictable 

periodic behaviour, and 1 − 𝐵𝓈  is an 

operator. On the other hand, using the Holt-

Winters method (Chatfield & Yar, 1991), a 

seasonal with time trend effects exponential 

smoothing approach for parameters before  

base time is optimal for an 𝐴𝑅𝐼𝑀𝐴(0,1, 𝓈 +
1) × (0,1,0)𝓈.  The exponential smoothing 

can be improved using the moving observant 

predictor in line with the additive model for 

𝑛  sampled parameters to extend the 

forecasting for long ranges with improved 

accuracy. Therefore, the improved ARIMA 

for 𝓃  correlated smoothing factor is given 

by 𝐴𝑅𝐼𝑀𝐴(0,1, 𝓈 + 1)𝓃 × (0,1,0)𝓈
𝔓

. This 

improved ARIMA model for long-range 

forecasting is referred to as 𝒾-ARIMA. 

The proposed method is summarized by 

algorithms that are classified into three parts: 

inertia monitoring, extraction, and 

forecasting, as demonstrated in Algorithm 1, 

Algorithm 2, and Error! Reference source 

not found., as presented in Table 1, Table 2 

and Table 3, respectively. 

 

Table 1: Algorithm 1: Network Model Identification 

Part I: Network Model Identification 

1. Input: Aggregated Power deviation of the network (𝒖𝒌 = ∆𝑷) 

2. Output: Frequency response deviations at the centre of inertia,  (𝒚𝒌 = ∆𝝎) 
3. State-space model:  

𝓍𝑘+1  = 𝐴𝓍𝑘 + 𝐵𝓊𝑘 +𝓌𝑘 

𝓎𝑘 = 𝐶𝓍𝑘 + 𝐷𝓊𝑘 +𝓋𝑘 

4. Block Hankel: Generate input and output block Hankel, extended block Hankel matrices, as 

well as past and future matrices using input-output data vectors, 𝒖𝒌, 𝒚𝒌 

5. Oblique projection: Compute the oblique and orthogonal projections using block Hankel 

matrices 

𝒪𝑖  ≝  𝑌𝑓 ∕𝑈𝑓  𝑾𝑝 

𝒪𝑖+1 = 𝑌𝑓
− ∕U𝑓

− 𝑊𝑝
+ 

6. SVD: Compute the SVD of the subjective oblique projection using  

𝑊1𝒪𝑖𝑊2 =  𝑈𝑆𝑉
𝑇 

7. Kalman sequence: Determine the Kalman state sequences 

�̃�𝑖 = Γ𝑖
†𝒪𝑖 

�̃�𝑖+1 = Γ𝑖−1
† 𝒪𝑖+1 

8. Dynamic matrix 𝑨: Compute the equations for 𝐴, 𝐵, 𝐶 and 𝐷  

(
�̃�𝑖+1
𝑌𝑖|𝑖

) =  (
𝐴 𝐵
𝐶 𝐷

) (
�̃�𝑖
𝑈𝑖|𝑖
) + (

𝜌𝜔
𝜌𝜐
) 

9. Pass on the dynamic matrix 𝑨 to the next algorithm 
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Table 2: Algorithm 2: Inertia extraction 

Part II: Inertia extraction from dynamic matrix 𝑨  

1. Eigenstructure: Calculate the eigenvectors and eigenvalues of the system by solving the 

characteristic equation of the dynamic matrix 𝑨. 

�̃�𝑖+1
′  =  𝐴′�̃�𝑖

′ 

𝐴�⃗� =  𝜆�⃗�  
2. Kalman matrix: Obtain the Kalman sequence matrix �̃�𝒊

′ as  

�̃�𝑖
′ ≈ ∑𝜙𝑗

𝑚

𝑗=1

𝜆𝑗�̃�𝑗(𝑡) 

3. Snapshot matrix: Determine the snapshot matrix of the estimated dynamic matrix 𝑨′ 
representing the dynamic modes of the system. 

𝑋 = [∆𝑓  ∆𝑃𝑒]
𝑇  ∈  ℝ2×𝑁 

4. Inertia extraction: Obtain the estimated system inertia by identifying the dynamic mode 

associated with the eigenvalue that corresponds to the system's inertia. 

2𝐻𝛼𝑖,∆𝑓𝜆𝒷 =  −𝛼𝑖,∆𝑃𝑒𝒷𝜔0 

5. Pass on the extracted inertia to the next algorithm 

Table 3: Algorithm 3: Inertia forecasting 

Part III: Inertia tracking and forecasting  

1. Time-series: Generate historical time series data sets of the extracted inertia values from the 

network model. 

2. ACF & PACF: Obtain Autocorrelation function (ACF) and partial autocorrelation function 

(PACF). 

𝜌𝑦(𝑘) =  
𝛾𝑦(𝑘)

𝛾𝑦(0)
 

3. Check stationarity: Based on ACF and PACF, the stationarity of the time series data set is 

checked.  

𝐶𝑜𝑣(𝑦𝑡 , 𝑦𝑡+𝑘) = ∑ ∑ 𝜓𝑖

∞

𝑗=−∞

𝜓𝑗𝛾𝑥(𝑖 − 𝑗 + 𝑘)

∞

𝑖=−∞

 

4. Fit ARIMA model: An ARIMA (p,d,q) is fitted on the checked data set and based on the 

moving average component of ARIMA, the inertia data are tracked.  

5. Forecast: Develop forecast models for short- and long-range forecasting of inertia values. 

(�̂�𝑇+𝜏(𝑇))
𝔓
  =  (∑𝜓𝑖𝜀𝑇+𝜏−𝑖

∞

𝑖=𝜏

)

𝔓

 

𝐴𝑅𝐼𝑀𝐴(0,1, 𝓈 + 1)𝓃 × (0,1,0)𝓈
𝔓

 

6. Validate: The forecasting model’s accuracy performances are tested and validated using the 

appropriate validating metrics. 

𝑀𝐴𝑃𝐸 =  
1

𝑁
∑|

 𝑦𝑡 − �̂�𝑡
 𝑦𝑡

|

𝑁

𝑡=1

 

APPLICATION ON THE DATA FROM 

NEW ZEALAND GRID  

Data preparation and processing  

The time series representing the power 

profiles for the years 2018 to 2022 is 

presented in Figure 2. In this power profile, 

the time resolution is 30 minutes, as obtained 

from New Zealand’s Electricity Authority 

webpage (Hiko, 2021). Figure 2 (a) shows the 

total power profile in the network, Figure 2 
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(b) shows the power profile for total 

renewable power contribution in the network, 

and Figure 2 (c) represents the contribution of 

wind power in the network. It can further be 

noted that the presented power profiles follow 

strong periodic and seasonality patterns.  

   

 

Figure 2: New Zealand power profiles for the 

years 2018 to 2022. 

 

Since inertia is at the core of the discussion, 

the suggested approach is verified by 

analysing and digesting the available data. 

With the SCADA data acquired from 

Transpower, the time series for the network's 

total inertia values are generated, allowing for 

the determination of when a generator was 

synchronised to the grid. Transpower's report 

provides the inertia values for every 

generator. (Transpower, 2014). Equation (7) 

is used to derive the time series inertia of the 

network and is presented with a time 

resolution of 10 seconds. Figure 3 (a) presents 

the time-series inertia of the network in (s), 

while Figure 3 (b) represents the time-series 

of the combined kinetic energy of the 

interconnected synchronous generators in 

(MWs). 

 

 
Figure 3: (a) Time series of inertia in (s) and (b) 

Aggregated kinetic energy in (MWs) of the 

New Zealand network 

 

Checking the stationarity of the data 

After obtaining the time-series data profiles of 

power generation and the inertia of the 

network for the years under consideration, a 

stationarity check is carried out to identify the 

stationarity status of the time-series data 

profile of inertia. ACF and PACF at different 

lags plots are obtained to check the 

stationarity of the time-series data. The 

ARIMA (1,1,1) can be used for stationary 

time series data to estimate, analyse and 

forecast observations based on the presented 

time series data. For the ARIMA (1,1,1) 

model, the order of autoregression (AR) is 

one, integrator (I) is one, and the moving 

average (MA) is one. With the moving 

average, the ARIMA (1,1,1) model can also 

be used to track the presented time series data. 

From ACF and PACF, stationary time-series 

data is identified. As the presented time series 

data satisfy the stationarity conditions, the 

ARIMA (1,1,1) is fitted on the inertia time-

series data from October – December 2022 to 

represent the rest of the data. Figure 4 shows 

how the ARIMA (1,1,1) model fits the data 

for 98% in (a), which is further proven with 

the residual index plot in (b). 
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Figure 4: (a) ARIMA (1,1,1) model fitting 

historical data set by 98%, (b) Residual index 

plot. 

 

Inertia tracking 

The proposed technique tracks the dynamics 

of inertia values in the network using the 

created time-series data. The method’s 

tracking speed is so fast that, when inertia 

changes, it only takes 25𝜇𝑠 for the estimation 

from the improved moving average (MA) of 

the ARIMA model to track the actual inertia 

signal. Evidence is shown in Figure 5 (a) 

when tracking is done for the data set of one 

month. The figure displays the network's 

inertia dynamics during a one-month period 

in (s). A few data sets are used to observe the 

efficacy of the proposed scheme closely. A 

week's worth of data is used to test the 

procedure in Figure 5 (b) (seven days). It is 

evident how well the ARIMA model's 

enhanced MA tracks the original inertia 

signal. In addition, Figure 5 (c) provides a 

close-up and clear perspective by zooming in 

on the tracking for two days. 

Next, the method is tested on the network data 

using stored kinetic energy in [MWs]. Figure 

6 (a) presents a one-month data set to 

represent the data. Similar to inertia in (s), a 

small range of data is used to highlight the 

efficacy of the technique. Therefore, Figure 6 

(b) presents the tracking of the stored kinetic 

inertia of the network for a ten-day data set. 

Figure 7 (a) and Figure 7 (b) show the 

tracking of the stored kinetic energy of the 

network for seven days and two days data 

sets, respectively. From the view in the figure, 

it is clear that the proposed tracking method 

monitors the stored kinetic energy effectively. 

 

 

Figure 5: (a), (b) and (c) Tracking of inertia for 

one month, one week and two days, 

respectively 

 

 

Figure 6: (a) Tracking of inertia data for one 

month. (b) Tracking of inertia data for one 

week 
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Figure 7: (a) and (b) Tracking of kinetic energy 

for one week and two days, respectively 

Inertia forecasting 

The suggested method is tested for the time 

ahead prediction of the total system inertia in 

(s) and the kinetic inertia of the network in 

(MWs). The historical measurement data 

provided in the preceding subsection verify 

the proposed technique. Tests are conducted 

on the proposed approach over various time 

horizons, categorised as short- and long-range 

forecasting. The results are compared with 

other forecasting methods from (Carlini et. 

al., 2021; Paidi et al., 2020). The performance 

of the forecasting methods to be compared is 

tested on the actual New Zealand network 

data. The various time horizon forecasts are 

tested at various intervals ahead of the current 

moment. 

The method is tested for the seven-day time 

ahead forecasting, as observed in Figure 8 (a). 

The results are not good as the forecasting 

error is outside the acceptable range, 

according to (Wambura et al., 2020). 

Therefore, further investigation is done to 

identify the longest time ahead for which the 

proposed method can give results with 

acceptable forecasting errors. Finally, the 

optimal time ahead is identified to be a 

maximum of two days ahead, as presented in 

Figure 8 (b). 

The method is also tested for the network's 

stored kinetic energy, just like for inertia. 

Figure 9 (a) illustrates the seven-day test run 

of the approach. Lastly, as shown in Figure 9 

(b), the ideal maximum predicting time 

yielding a reasonable variance is again 

restricted to two days.  

 

 
Figure 8: (a) and (b) Inertia forecasting for 

seven days and two days, respectively 

 

 
Figure 9: (a) and (b) Kinetic energy forecasting 

for seven days and two days, respectively 

PERFORMANCE ANALYSIS OF THE 

PRESENTED TECHNIQUE 

The widely used metrics to evaluate 

forecasting methods are mean square error 

(MSE), root mean square error (RMSE), 

mean absolute percentage error (MAPE) and 

mean absolute error (MAE). However, due to 

some denunciations that these metrics are 

undefined in some cases (Wambura et. al., 

2020; Chen et. al., 2017), the performance 
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accuracy and quality for short-range are 

evaluated using symmetric mean absolute 

error (SMAE). This metric is defined as in 

(40). 

𝑆𝑀𝐴𝐸 =
1

𝑁
∑{

| 𝑦𝑡 − �̂�𝑡|

| 𝑦𝑡| + |�̂�𝑡|
}

𝑁

𝑡=1

 (40) 

where 𝑁  denotes the number of 

experimental data,  𝑦𝑡  and �̂�𝑡  are the true 

and predicted inertia at tth time, 

correspondingly. On the other hand, due to 

the fact that SMAE can be used for long-

range forecasts, the long-range forecast 

performance accuracy and quality are still 

checked by MAPE. The MAPE metric is 

defined as in (41). 

𝑀𝐴𝑃𝐸 =  
1

𝑁
∑|

 𝑦𝑡 − �̂�𝑡
 𝑦𝑡

| 

𝑁

𝑡=1

 (41) 

The performance superiority of the technique 

is tested in reference to the other two different 

forecasting methods presented in (Carlini et 

al., 2021; Paidi et. al., 2020). Testing and 

comparing the proposed methods is 

conducted using historical inertia data for the 

New Zealand network to validate the method. 

The testing is conducted to examine the 

important aspects of modern power systems 

application: accuracy, robustness, time 

horizon and speed of communication to the 

PSOs. While examining these features, other 

aspects, such as uncertainty and dormant 

historical patterns in the data, are considered.  

The presented power and inertia data in 

Figure 2 and Figure 3 show that the datasets' 

characteristics can be autoregressive, moving 

average and seasonal (Montgomery et. al., 

2015). The repeating patterns observed in 

historical datasets covering a long time, such 

as for a few years, help the moving observant 

predictor to forecast the data trends for long 

ranges. Using the stationarity factor in data 

allows the proposed method to cope with 

stochasticity in datasets with well-

standardized uncertainty estimates 

(Montgomery et. al., 2015). 
 

Online tracking 

To evaluate the accuracy of the tracking 

capability, the improved moving average 

window in the ARIMA model is used to track 

inertia measurements from the network. As 

presented in the given inertia data with a time 

resolution of 10 sec, the algorithm gets 

enough time to prepare and track the next 

observation measurement with a speed of 

25𝜇𝑠 and a refresh rate of 2 s. A statistical 

analysis is carried out for each set of 

estimation data obtained at different levels of 

RES penetration.  As shown in Figure 5 to 

Figure 7, the tracking signal tracks/monitors 

effectively the actual system inertia signal 

throughout the data presented.  
 

Short-range forecasting 

The proposed method is tested for a short time 

ahead of the network inertia forecasting. In 

this case, the time ahead is limited to only four 

hours. The comparison methods are also 

applied to four-hour time ahead forecasting 

tested on New Zealand data. Error! 

Reference source not found.The 

applicability comparison of the proposed 

method with the other two methods as 

measured by SMAE on various datasets are 

presented on Table 4. The proposed method 

gives superior results over the other 

competing methods. 

Table 4: Comparison of SMAE between the 

proposed method and the two other forecasting 

methods 

Technique SMAE 

 𝒾-ARIMA technique 0.051 

Artificial Neural Network 

technique 

0.101 

MVHFIR technique 0.130 

 

Error! Reference source not found.5 also 

gives a further SMAE comparison of the 

proposed technique to other forecasting 

methods (method 1 in Carlini et. al., 2021 and 

method 2 in Prakash et al., 2018) for the 

specific different time ahead forecasts. For a 

maximum of four hours of the forecast, the 

proposed method has better accuracy for each 

step of the time ahead forecast.  
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Table 5: SMAE comparison of the proposed method 

to other two forecasting methods across various 

forecast lead times 

Time 

(hr) 

SMAE  

Proposed 

method 

Method 1  Method 2  

0.0 0.001 0.015 0.005 

0.5 0.003 0.021 0.009 

1.0 0.005 0.028 0.014 

1.5 0.008 0.034 0.022 

2.0 0.010 0.039 0.031 

2.5 0.017 0.051 0.045 

3.0 0.022 0.067 0.052 

3.5 0.028 0.083 0.064 

4.0 0.035 0.110 0.078 

 
The trend of the proposed method on the test 

data demonstrates the forecasting power of 

the proposed method in capturing essential 

dynamic features of the effective inertia in the 

considered network. For the considered short 

time, the comparing forecast methods hardly 

performed better. The influence of the moving 

observant predictor gives the proposed 

method an advanced performance as it 

improves the forecast time horizon, accuracy 

and robustness to variations in inertia and 

prevalent patterns. The predictor further 

reduces prediction variances and gives better 

probabilistic outputs with reduced residual 

errors. 
 

Long-range forecasting 

The 𝒾-ARIMA is further tuned for different 

values of moving observant predictor 𝔓 , 

periodicity and seasonality factor of the time-

series data set 𝓈 and the smoothing factor 𝓃. 

After several tunings, the five combinations 

of the parameters that give good forecasts and 

accuracy for one-hour forecasts in terms of 

MAPE [%] are presented in Table 5. The 

optimal combination values that give the best 

forecasts and accuracy are 0.235, 10 and 17 

for 𝔓 , 𝓈  and 𝓃 , respectively, as shown in 

Table 6. Using this combination, the method 

is tested for one day ahead forecast and then 

for two days ahead forecast. The proposed 

method does very well for a day-ahead 

forecast of the network inertia, giving MAPE 

of 3.06%. It also gives good forecasts for 48 

hours with the maximum MAPE of 8.89% 

before the accuracy reduces significantly for 

further predictions of the inertia values 

beyond 48 hours. Because of this, the 

proposed approach is the most effective way 

to predict long-range inertia values in 

contemporary power systems.  

 
Table 6: Tuned moving observant predictor 𝕻, 

periodicity and seasonality factor 𝓼  and the 

smoothing factor 𝓷 for best forecasts 

Tuning 

score 
𝔓 𝓈 𝓃 MAPE 

1 0.235 10 17 1.23 

2 0.341 12 16 3.41 

3 0.862 11 15 6.82 

4 0.541 14 16 8.11 

5 0.439 9 14 12.97 

 

CONCLUSION 

This paper presents an effective and improved 

ARIMA framework termed 𝒾 -ARIMA that 

forecasts a network's short- and long-range 

inertia values. The approach uses the power of 

strong periodic and seasonality patterns of the 

time series data to introduce a moving 

observant predictor at different lags to give it 

a superior capability for long-range inertia 

forecast in power systems. The best accuracy 

of the 𝒾-ARIMA is achieved by fine-tuning 

and selecting the optimal combination of the 

moving observant predictor, periodicity and 

seasonality factor and smoothing factor at 

different lags. Based on previous historical 

inertia data set observations in the New 

Zealand network, the 𝒾-ARIMA is evaluated 

and tested. The results show that 𝒾-ARIMA is 

fast, robust, accurate and superior to other 

forecasting methods. 
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