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ABSTRACT: An analysis of masonry arches where collapse is assumed
to occur by the hinging of voussoirs upon each other is made. The
behaviour of the arch material is assumed to be such that the
plastic theory is valid. Certain aspects related to the properties
of the line of thrust are clarified. so far the approach by
writers has been based on the conventional view that the line of
pressure is tangential to the line of thrust. It is shown that
this is not the case in general. Definitions are given on what is
meant by "line of thrust" and line of pressure in arches and the
analysis is done in the light of the meanings attached to these
terms. The analysis is done for the case of a semi-circular
masonry arch under an infinite overburden pressure and the results
obtained are compared to ones obtained by Irvine (4) whose approach
was based on the conventional views of the line of thrust and
pressure. It is shown that there is a significant difference in
results with the two approaches. The analysis is repeated for the

case of masonry arches of a general angle of embrace.

The results obtained give critical values of voussoir thicknesses

for the stability and the safe dimensioning of masonry arches.
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1.0 INTRODUCTION

The art of building arches dates back to the Romans who used arches
extensively in the construction of their bridges and aqueducts.
The arches so constructed consisted of semi-circular rings with
individual shaped stones. The Romans were so skilled that some of
their arches still stand today.

The Romans were, however, handicapped by the fact that there was no
theory at their time of determining safe dimensions for the arches.
The mechanical principles of their stability were unknown and the
builders relied mainly on their experience.

The Roman methods were gradually forgotten in the medieval times
when there was little or no bridge construction.

Towards the end of the seventeenth century some attempts were made
by French engineers to draw up some theories which would govern
arch designs. The most notable scientist was Lahire (1640-1718)
who applied the principles of statics in the solution of arch
problems. Much is attributed to his book "Traite de Mechanique"
(5) in which he applied the principles of the funicular polygon for
the first time in arch analysis. His approach was to divide the
arch into wedges and then determine the weights of the wedges
necessary to ensure the stability of the whole structure. Lahire
was able to extend the theory to determine the proper dimensions of
the pillars supporting the arch (5).

Belidor, Perronet and Chezy are said to have been among the first
to put Lahire’s method into practical use (6). They used it to

prepare tables for use in the calculation of thicknesses of arches.
Lahire’s approach assumed the interacting surfaces of the voussoirs

(wedges) to be smooth and that the pressure acted normal to the

face of each voussoir. This led to the conclusion that the
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voussoir must be of increasing depth towards the springings for the
arch to be in equilibrium.

Experiments are reported (10) of two arch models with polished
metal voussoirs in which the pressure normal to the face of certain

voussoirs was measured in order to prove the validity of the wedge

theory.

An alternative approach adopted was to assume that the voussoirs
were infinitely rough so that the arch fails by the rotation of
some of the voussoirs about their edges. This was actually shown
to occur in model experiments (1) in 1730. It was erroneously
concluded that the joints of rapture for all the arches occured at
the keystone and at 30° to the horizontal. Couplet (1) computed
minimum voussoir depth necessary for the line of thrust to just lie
within the arch. What is notable is that he recognized that the
line of thrust in an arch consisting solely of a semi-circular
ring of voussoirs insn‘t itself a semi-circle. He appeared to have
had a clear understanding of lines of thrust and the mechanics by
which arches fail.

The notion of "a line of pressure" and "a line of resistance" were
introduced by Gerstner (2) in 1830 and is said to have done a lot
of investigations of lines of pressure. Moseley (7) in 1839 made
an important contribution by showing for the first time the
difference between pressure lines and resistance lines and showed
that they are different curves. Though this important distinction
was made reasonably long ago it appears that it isn’t fully
appreciated by some people even today.

In recent years Pippard and Baker (9) have examined in detail the

collapse of the voussoir arch. Heyman (3) has worked on the
stability of masonry arches using the plastic theory and the lower
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bound theorem. Irvine (4) has considered the conditions obtaining
when a classical semi-circular masonry arch is on the verge of
collapse.

A fuller account of the historical development of arch theories and
some useful references are contained in a book by S.P. Timoshenko
(11) and a research paper by A.J.S. Pippard and L. Chitty. (10).

2.0 THEORY OF MASONRY ARCHES

2.1 Assumptions

Masonry arches may be constructed of masonry or brickwork where
small units, bricks or voussoirs are held together by cement
mortar. In this respect the arch structure can be considered to

be made of composite material.

From the theoretical point of view it is important to distinguish
between the two. A homogeneous structure may reasonably be
expected to behave elastically within the 1limits set by the
material of which it is made whereas the same assumption becomes

questionable in the case of a structure made of composite material.

Brickwork, masonry and plain concrete though very strong in
compression are relatively weak in tension. The presence of joints
between bricks and voussoirs made of such materials will lead to
cracks along the joints in regions of tension. It is reasonable in
this case to use plastic theory and limit state in the design.

The application of the plastic theory to masonry arches is valid
under the folowing assumptions:

1) Sliding failure doesn’t occur.
It is assumed that the material is assembled in such a way
that friction and the interlocking of parts will prevent

disintergration by sliding. The shearing resistance of joints
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is neglected. The function of any mortar across a joint would
be to facilitate a uniform distribution of thrust across the
joint and not adhesive resistance.

The material has an infinitely high compressive strength.
This comes from the fact that stress levels in real arches are

small when compared to their compressive strength.

The tensile strength is small enough to be ignored. This
assumption is conservative. In masonry construction though
the stone might have a significant tensile strength, the
mortar between the voussoirs is very weak and cracking would
occur at the joints.

The material is incompressible.

The Stability and Failure Mechanism

The masonry arch consists of a number of wedge shaped bricks of

masonry with a jointing material of mortar or cement. The names
used in connection with the arch ring and the adjacent parts are
shown in Fig. 1.

Fig.

~.
e ~ _—Extrados
WS L0 :

Intrados

1: Names Used in Masonry Arches
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The wedge shaped bricks of which the arch is built are known as
voussoirs. They are normally symmetrically disposed about a
central voussoir called the keystone. The keystone is mainly for
easthetic reasons and has no more structural importance than any
other voussoir. The skewback is the block on the abutment upon
which the end voussoirs rest. The highest point of the arch is the
crown. The under surface of the structure is the soffit. When
this form of arch is used for a bridge the spaces between the top

of the arch and the level of a roadway is built up by a fill.

The analysis of masonry arches is a classical problem. By elastic
considerations the structure is statically indeterminate. If the
spandrel is filled with loose material the incidence of the load on
the ring is indeterminate because the pressure of a granular
material will not be wholly vertical but will have a horizontal
component which is a function of the angle of repose. The line of

pressure cannot therefore be easily determined (4).

The application of plastic principles is therefore of considerable
interest.

Heyman (3) has considered the conditions under which the stability

of the structure (Fig.2) is lost assuming the arch to be carrying
only its own weight.

A

E

Fig.2: Line of thrust and mechanism of collapse.
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He maintains that this occurs when the line of thrust (dotted in
Fig.2) touches the extrados at the crown and the intrados at points
on the haunches and passes through the extrados at the springings.

The arch would then fail by the hinging of the voussoirs at points
A through E.

The main problem is therefore to determine the thickness ratio t/R
of the arch under this limiting condition and the angle f at which

the hinge forms.

Irvine (4) also considered the stability of the Roman arch under an
infinite and variable overburden along the same lines as Heyman.
His assumption was, however, that the 1line of pressure is

tangential to the line of thrust which is generally not the case.

2.3 Formulation of the Arch Thrust Line Problem.

Fig. 3: Force actions at an arch section.

Consider an arch section as shown in Fig.3. The actions at any
normal cross section BD can be resolved into a bending moment M, a
shearing force Q and a normal force N through the centroid. The
resultant of the forces N and Q is given by R,viz N + Q = R. The
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three forces (M,N,Q) are statically equivalent to a single force R

acting at a distance (eccentricity) e, given by the ratio M/N.

The line of thrust is the locus of the eccentricity (e = M/N) with
respect to the arch centre line, while the line of pressure is the
envelope to R. The conventional view is that R is tangential to
the line of thrust, (4). But R is not tangential to the line of

thrust in general.

3.0 THE STABILITY OF THE SEMI-CIRCULAR MASONRY ARCH
3.1 stability under Distributed Loading

d

Fig.4: stability under distributed loading.

Consider the case of an arch under an overburdern pressure.

magnitude of the distributed load will be proportional to
length ab and it will be assumed that the load acts over
centre-line of ring with mean radius R (Fig.4). Generally,
thickness t will be small in comparison to the radius R and

The
the
the
the
the

total load will not be very different from the actual load enclosed

in cdef.
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Assuming the plastic theory of failure and the mechanism shown in
Fig.2 the problem will be to determine the critical thickness t and

the angle # when the arch is on the verge of collapse.

Consider an element of the arch as shown in Fig.5.

Fig. 5: Equilibrium of an arch element.
The equilibrium of the element requires the following:

i) In the tangential direction:

an o) {g% + p cosfP sinP =0 (x)

ds
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i) In the radial direction

* —g—g ds + NdB + pds cos?B = 0 2

1:34.) Moments about A

2
- 0 - pds CQ? = 0 (3)
FA

gl

The solution of the above equations can be shown (8) to be

N = A sinP + B cosP - pR sin?p (4)
Q=- AcosP + Bsinf} + pR sinP cosp (5)
2
M= - AR sinP - BR cosfp - p%coszﬂ +C (6)

where A,B,C are arbitrary constants.

The boundary conditions on the verge of collapse (Fig.2) require

i AcB =0, e=tf2,
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ii) At p = 0 (where the hinge forms at the intrados), de/ds = 0.

iii) At P = wn/2, e = t/2.

iv) At p =06, e=-t/2.

From symmetry of loading, the shear force at the crown should be
Zero.

From the above boundary conditions we obtain

t _ _cos?® _ )
R 2cosb-1

f = 54.695°
T = £t/R = 0.1431
The abutment thrust, H,
H, = -0.5335pR
The shear force at the intrados hinge position is given by
0 =3.64 x 107pR
The normal force, N at the hinge position is

N = -0.974 pR
The eccentricity is given by e = M/N so that
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de _ Q(1+eK) + ep cosf sinp (8)
ds N

where K = 1/R is the curvature.

Under distributed loading p, we have at a hinge section.

&= -epcos P sinf (9)
(1+ekK)

The line of pressure is tangential to the line of thrust when Q=0.
Clearly Q in egn. (9) can never be zero under distributed loading
p as conventionally assumed . The line of pressure cannot therefore
be tangential to the line of thrust . The formation of a hinge
doesn’t depend only on the moment as the case is in beams but on
both the moment and the normal force at the section.

It so happens that in the case of an infinite overburden pressure
the shear force is small in comparison to the normal force and that
there is little error in assuming the shear force is zero. For

example Irvine (4) in assuming the shear force is zero came out
with values of

6 = 54.7
t/R = 0.144
H, = 0.536 pR

Irvine’s values for small overburden heights significantly deviates
from values obtained under the current approach (8).
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3.2 Stability under the General Case of Overburden Height
Under the general case of overburden height h/R (Fig.6) values of
t/R are obtained as shown in Fig.8. These values are compared with

those obtained by Irvine whose approach was based on the
conventional method.

Fig. 6: Stability under the general case of overburden height.

3.3 Stability under the Case of an Infinite Overburden and a
General Angle of Embrace.

Fig.7: Failure under the general angle of embrace a
infinite overburden.

and an
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Under a general angle of embrace «a (Fig.7) and an infinite
overburden analysis by the previous approach gives the values shown
in Table 1. The critical voussoir thickness t/R, the horizontal
component of pressure H,/pR and the location of the hinge # are
given as a function of «a.

These values are plotted in figures 9,10 and 11.
Table 1: Values of the critical voussoir depth t/R, the location of

the hinge f# and the horizontal component of pressure H, as a

function of the angle of embrace.

a(deqg.) t/R 6 (deg.) H,/pR
20 0.0005 14.00 0.97
25 0.0011 17 .43
30 0.0022 20.75 0.95
35 0.0041 25.03
40 0.0069 27.24 0.89
45 0.0108 30.36
50 0.0162 33.40 0.83
55 €. 0233 36.36
60 0.0323 3%9.23 0.76
65 0.0435 42.02
70 0.0572 44 .71 0.69
75 0.0738 47.33
80 0.0934 49 .87 0.61
85 0.1164 52.32
90 0.1431 54.69 0.53
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Fig. 8: Critical voussoir thickness T = t/R as a function of the
overburden height, H = h/R (a = 90 deg.)
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Fig. 9: Variation of voussoir thickness T = t/R with arch angle of
embrace a. (h/R = « )
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Fig. 10: Variation of the horizontal component of pressure H, with

arch angle of embrace a«. ( h/R = w )
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Fig. 11: Variation of the hinge angle §
embrace, a. ( h/R = = )

with arch angle of
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4. CONCLUSIONS

An attempt has been made to clarify some aspects related to the
properties of the line of thrust in the analysis of masonry arches.
While the line of thrust is the locus of the eccentricity (e =
M/N), the line of pressure is the envelope to R (Fig.3). The line
of pressure is not generally tangential to the line of thrust

except in sections where the shear force is zero.

Most of the previous work on the analysis of masonry arches assume
failure to occur at sections of maximum moment just as it does in
flexural members. It has been shown here that using the plastic

theory failure will occur at sections of maximum eccentricity.

There is a significant deviation in results with the two approaches
especially at small overburden pressures. Irvine(4) over-estimated
the critical voussoir thickness by up to 30% and under estimated
the angle locating the hinge position by about 10%.

The voussoir thickness calculated are minimum thicknesses if the
arch has to stand. However, accidental super imposed loads will
distort the line of thrust so that it can no longer be contained
within the masonry. Arches must therefore be made thicker to take
this possibility into account. In practice arches are made much
thicker than they are theoretically required. The added advantage
is that abutment thrusts are greatly reduced (4).

The results in this study can be used in the safe dimensioning of
masonry arches.
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