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ABSTRACT  

In the context of Industry 4.0, predictive maintenance enhances 

operational efficiency by optimizing processes, minimizing downtime, 

and improving cost-effectiveness. However, implementing predictive 

maintenance requires a systematic approach due to its complexity. This 

study collected expert input from 15 food and beverage manufacturing 

industries located in Dar es Salaam, Tanzania, using a purposive 

sampling technique. Six representatives were selected from each 

industry, and their opinions were analyzed using MATLAB 7.6 through 

a fuzzy logic inference system. The analysis focused on key factors 

influencing Industry 4.0 technology adoption for predictive 

maintenance, including adoption intention (strategic decision, 

equipment data, perceived benefit) and perceived usefulness 

(organizational culture, risk perception, external pressure). The results 

indicate that when strategic decision-making (technical function) is at 

20%, equipment data quality at 15%, and perceived benefit (flexibility) 

at 25%, the adoption intention of the technology drops to 10%. The 

fuzzy logic system used techniques such as fuzzification, inference, and 

aggregation to assess the feasibility of predictive maintenance 

adoption. The model was validated and refined to ensure accuracy and 

relevance, offering decision support for maintenance planning and 

resource allocation. This Fuzzy Logic-Based Decision Support System 

provides a structured approach to overcoming the complexities of 

adopting predictive maintenance in Industry 4.0, helping 

manufacturing industries improve their operational efficiency and 

competitiveness. 
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INTRODUCTION  

The history of industrial development has 

unfolded through successive stages, each 

marked by transformative technological 

shifts. The First Industrial Revolution 

introduced mechanized production systems 

powered by steam and water. This was 

followed by the Second Industrial 

Revolution, which brought about mass 

production through the use of electrical 

energy and assembly line methods. The 

Third Industrial Revolution marked the 

emergence of automation, facilitated by the 

integration of electronics, information 
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technology, and programmable logic 

controllers (PLCs). Currently, the world is 

experiencing the Fourth Industrial 

Revolution (Industry 4.0) a paradigm 

characterized by the convergence of digital 

technologies such as cyber-physical 

systems, the Internet of Things (IoT), 

artificial intelligence (AI), big data, and 

advanced analytics. These technologies are 

deeply interlinked and are reshaping 

industrial operations by enabling smarter, 

real-time monitoring, predictive 

optimization, and autonomous decision-

making in manufacturing environments 

(Kumar et al., 2020). 

A central feature of Industry 4.0 is the 

application of Predictive Maintenance 

(PdM) an advanced maintenance strategy 

that leverages cutting-edge technologies to 

anticipate equipment malfunctions before 

they occur. Unlike conventional 

approaches such as reactive maintenance, 

which addresses failures post-occurrence, 

or preventive maintenance, which relies on 

scheduled interventions based on time or 

usage thresholds, PdM utilizes real-time 

data collected from IoT-enabled sensors, in 

combination with machine learning 

algorithms and big data analytics, to 

forecast potential faults. This predictive 

capability allows for timely and targeted 

maintenance actions, minimizing 

unexpected downtimes and optimizing 

operational efficiency and resource 

utilization (Couper, 2020). 

Despite its potential benefits, the 

widespread adoption of PdM poses 

significant challenges for manufacturing 

enterprises. These include the 

technological complexity inherent in 

Industry 4.0 systems, the high capital 

investment required for infrastructure and 

skill development, and the organizational 

change necessary to integrate and sustain 

such technologies (Bosman et al., 2020). 

Moreover, industry leaders often face the 

daunting task of evaluating a broad 

spectrum of technological solutions, 

balancing cost-effectiveness, and managing 

the inherent uncertainties associated with 

dynamic production environments. In view 

of the complexities and implementation 

challenges surrounding predictive 

maintenance (PdM) in the Industry 4.0 

environment, there is a clear and urgent 

need for a robust decision-making 

framework that can support manufacturers 

in addressing these barriers and unlocking 

the full benefits of PdM technologies. To 

this end, the present study proposes the 

development of a Fuzzy Logic-Based 

Decision Support System (DSS) 

specifically designed to facilitate the 

integration of predictive maintenance 

within smart manufacturing contexts. 

Fuzzy logic, recognized for its ability to 

manage uncertainty and imprecise 

information, offers a structured 

methodology for assessing key 

performance indicators (KPIs), evaluating 

PdM feasibility, and supporting strategic 

decision-making throughout the adoption 

process. By incorporating fuzzy 

aggregation methods, rule-based reasoning, 

and linguistic variable models, the 

proposed DSS is capable of generating 

practical insights that enhance maintenance 

planning, resource allocation, and overall 

operational performance. 

Drawing upon an extensive review of 

literature, conceptual models, and 

empirical case studies, this research 

investigates the effectiveness of fuzzy logic 

in predictive maintenance decision-

making. The study contributes to the 

broader Industry 4.0 discourse by 

introducing a systematic tool for 

overcoming technical, organizational, and 

financial constraints, thereby enabling 

manufacturers to enhance productivity, 

operational resilience, and long-term 

competitiveness. 

 

Decision Support Systems for 

Maintenance Optimization 

The use of Decision Support Systems 

(DSS) for maintenance optimization has 

garnered significant attention, particularly 

in response to the increasing complexity 

and data intensity of contemporary 
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manufacturing operations. DSS 

frameworks serve as valuable tools for 

assisting decision-makers in enhancing 

maintenance planning, reducing equipment 

downtime, and improving overall system 

reliability. Early implementations of these 

systems often relied on traditional 

statistical techniques and rule-based expert 

systems to guide maintenance-related 

decisions. 

For example, Wang et al. (2018) introduced 

a machine learning-driven DSS capable of 

prioritizing maintenance activities and 

forecasting potential equipment failures. 

Although such systems demonstrated 

strong analytical capabilities and handled 

large-scale data efficiently, they frequently 

lacked consideration for important 

qualitative dimensions such as human 

expertise, operational context, and risk 

tolerance that are integral to sound 

maintenance decision-making. Addressing 

these limitations has become increasingly 

important in the design of next-generation 

DSS, particularly within the context of 

Industry 4.0 environments that require 

flexible, adaptive, and human-informed 

decision models. 

Recent developments in decision support 

systems (DSS) have leveraged state-of-the-

art technologies, including artificial 

intelligence (AI), the Internet of Things 

(IoT), and big data analytics, to enhance 

predictive maintenance (PdM) capabilities. 

Kothamasu et al. (2019) investigated the 

use of AI-driven analytics and real-time 

sensor data to forecast equipment failures 

and suggest optimal maintenance 

strategies. Despite these advancements, the 

management of diverse data from multiple 

sources presents a significant challenge. 

Fuzzy logic has emerged as an effective 

tool for handling uncertainties, as 

illustrated by Gupta et al. (2020), who 

developed a Fuzzy Logic-Based DSS that 

integrates both quantitative and qualitative 

data to offer contextually relevant 

recommendations. Furthermore, hybrid 

models, such as the one proposed by 

Rodríguez et al. (2021), which combine 

machine learning, fuzzy logic, and 

simulation models, have shown success in 

improving maintenance decision-making 

by addressing the random nature of 

equipment failures and the uncertainties 

surrounding resource availability. 

 

Tanzania Manufacturing Industries 

The manufacturing sector is a vital 

component of Tanzania's economy, 

contributing about 8% to the country's GDP 

according to recent data from the World 

Bank (2023). This sector is varied, 

including areas such as textiles, chemicals, 

construction materials, and food 

processing. Despite its potential, the 

sector's growth has been hindered by 

several challenges, such as inadequate 

infrastructure, unreliable power supply, and 

limited access to modern technology. A 

significant number of manufacturing 

industries in Tanzania continue to use 

outdated machinery, leading to operational 

inefficiencies and increased production 

costs (United Nations Industrial 

Development Organization, 2022). The 

adoption of Industry 4.0 technologies, 

including predictive maintenance, is 

deemed essential for enhancing the sector's 

competitiveness. However, many 

companies face difficulties due to the high 

initial costs of implementation and a lack of 

technical expertise (Mwangola et al., 

2023). 

 

Food and Beverage Manufacturing 

Industries 

The food and beverage sector plays a 

substantial role within Tanzania’s 

manufacturing industry, largely driven by 

the country’s agricultural productivity. 

Together, these industries represent over 

half of the nation’s total manufacturing 

output and primarily focus on processing 

agricultural products such as cereals, dairy, 

and beverages (Tanzania Investment 

Centre, 2022). Nevertheless, they 

encounter distinct challenges, including 

seasonal variations in production and 

limited access to modern technologies 
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necessary for maintaining consistent 

product quality. Although initiatives have 

been undertaken to introduce automation 

and predictive maintenance to boost 

operational efficiency, adoption has been 

gradual, hindered by high costs and a 

general lack of awareness about advanced 

technological solutions. Integrating 

Industry 4.0 technologies, particularly in 

predictive maintenance, offers promising 

prospects for reducing equipment 

downtime, enhancing reliability, and 

increasing overall productivity in this vital 

sector (Mbogoni et al., 2023). 

 

Fuzzy Logic Applications in Decision 

Making 

Fuzzy logic has gained prominence as an 

effective method for managing imprecise 

and uncertain data within decision-making 

contexts. Ottomanelli et al. (2005) 

contributed foundational theoretical 

insights into fuzzy logic applications, 

highlighting its capacity to emulate human 

reasoning and incorporate subjective 

judgments into analytical models. In the 

realm of maintenance decision-making, 

research by Aiello et al. (2021) has 

demonstrated the practical utility of fuzzy 

logic-based approaches in evaluating 

equipment reliability, prioritizing 

maintenance activities, and assessing 

associated risk factors. This body of work 

underscores fuzzy logic’s relevance in 

enhancing decision quality under 

conditions of uncertainty. 

 

Case Studies and Practical Applications 

Multiple case studies and practical 

implementations have demonstrated the 

practical viability and advantages of fuzzy 

logic-based decision support systems 

(DSS) within manufacturing environments. 

For example, Dell’Orco et al. (2008) 

reported the successful deployment of a 

fuzzy logic-based DSS for maintenance 

scheduling and resource management at a 

semiconductor manufacturing plant, 

leading to notable cost reductions and 

enhanced operational performance.  

Despite these advances, while the existing 

body of literature offers valuable insights 

into predictive maintenance, decision 

support systems, and the application of 

fuzzy logic—along with their integration 

into Industry 4.0 frameworks—there 

remains a significant research gap. 

Specifically, there is a need to develop 

comprehensive models that effectively 

navigate the complexities of maintenance 

decision-making in the highly dynamic and 

uncertain conditions of modern 

manufacturing settings (Vidanagamachchi 

et al., 2020).  

This study aims to address this gap by 

proposing a novel fuzzy logic-based 

decision support system (DSS) explicitly 

designed to facilitate the adoption and 

implementation of predictive maintenance 

in Industry 4.0-enabled manufacturing 

sectors. The proposed framework seeks to 

enhance decision accuracy and operational 

efficiency amidst the evolving 

technological landscape. 

  

Basics of Fuzzy logic 

Fuzzy logic was first conceptualized by 

Lukasiewicz in the 1930s (Lau and Dwight, 

2011). Its practical application in 

engineering began in the 1960s, initially 

through the development of fuzzy set 

theory, followed by the introduction of 

fuzzy algorithms in 1968. Since then, fuzzy 

logic has significantly contributed to 

engineering disciplines, primarily because 

of its ability to accommodate subjectivity 

and uncertainty during model development 

and problem-solving processes 

(Punniyamoorthy et al., 2011). Its 

importance becomes even more 

pronounced when modeling systems that 

are difficult to define with precision, such 

as the adoption of innovative technologies. 

This unique feature has empowered fuzzy 

logic to support research in production 

management, especially in environments 

where dynamic conditions hinder clear 
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specification of objectives, constraints, and 

measurements.  

The appeal of fuzzy logic has grown further 

due to its capacity to effectively describe 

problems involving both statistical 

vagueness and qualitative ambiguity. Its 

versatility is reflected across various 

domains within the supply chain, including 

production management, quality assurance, 

and cost-benefit analysis (Marzouk and 

Osama, 2017). The prevalence of imprecise 

and ambiguous information in these fields 

primarily drives the application of fuzzy set 

theory. Moreover, the scarcity of 

comprehensive knowledge, precise 

references, and reliable data accentuates the 

utility of fuzzy logic, as it provides a 

structured framework for tackling such 

uncertainties. In these contexts, scoring 

methods are often employed to handle the 

inherent ambiguities, making fuzzy logic 

an attractive approach to complex decision-

making problems. 

However, this method is not typically 

applied in decision-making related to the 

adoption of manufacturing industry (MI) 

technologies. As proposed in this paper, 

utilizing fuzzy inference techniques can 

significantly aid in making such complex 

decisions. Unlike traditional approaches 

like classical logic, fuzzy logic effectively 

manages systems characterized by 

ambiguity and uncertainty (Addabbo et al., 

2004). In fuzzy set theory, a universe of 

discourse, or simply the universe, 

comprises the elements of a fuzzy set. By 

defining a membership function also 

known as a grade of membership over the 

interval [0, 1], fuzzy set theory 

encapsulates the imprecision associated 

with numerous variables. 

Mathematically, consider a finite set of 

objects (X = {x_1, x_2, x_3, ..., xn}), where 

each ( x_i ) is an element in (X). Each 

element (x_i) is associated with a 

membership function (u). A fuzzy set (A) 

can then be expressed as a collection of 

ordered pairs: (A = {(x1, u1(x1)), (x2, 

u_2(x_2)), ..., (xn, un(xn)}). The fuzzy rule 

base comprises a series of "if–then" (also 

called Antecedent–Consequent) rules, 

formulated based on domain knowledge 

derived from data samples. For instance, a 

rule might be: “If (x1) is (A) and (x2) is (B), 

then (y) is (C),” where (x1) and (x2) are 

input variables, (y) is the output or decision 

variable, and (A), (B), and (C) are fuzzy 

terms representing linguistic descriptions. 

This fuzzy rule structure enables effective 

modeling of complex, uncertain decision 

environments inherent in technology 

adoption processes. 

 

MATERIALS AND METHODS 

Design of fuzzy inference system model 

In a fuzzy system, specific input data are 

fed into a set of rules tailored to the 

particular system being analyzed. These 

rules process the inputs through fuzzy logic 

mechanisms, producing fuzzy outputs. The 

final decision is then derived by 

defuzzifying and aggregating these outputs. 

The entire workflow of a typical fuzzy 

inference system is illustrated in Figure 1, 

providing a clear overview of how inputs 

are transformed into actionable decisions 

using fuzzy logic principles. 

 

Data collection 

The study population comprised 15 

manufacturing industries in Tanzania 

(TMIs). Data collection was conducted 

through a structured questionnaire, 

developed based on existing measurement 

scales for the research constructs. To 

ensure content validity and clarity, a 

preliminary review was carried out 

involving 15 executives from different 

TMIs. Their feedback prompted several 

modifications, resulting in a questionnaire 

that was more meaningful and easier to 

understand for the targeted respondents. 

Particular attention was given to user-

friendliness and ease of completion during 

this revision process. 

The finalized questionnaire consisted of 90 

items framed on a five-point Likert scale, 

where respondents from various TMIs were 
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asked to evaluate their opinions regarding 

specific maintenance technologies or 

techniques. Responses were then 

transformed by multiplying the average 

scores of each variable by 20, changing the 

original scale from 1–5 to 1–100. This 

scaling adjustment aligns with the 

membership function scale used in the 

fuzzy inference modeling process. 

 
Figure 1: Fuzzy inference system process. 

 

Although the constructs studied are 

primarily individual in nature, the research 

assumes that these perceptions reflect 

organizational roles and strategic 

perspectives, especially among key 

personnel responsible for maintenance 

management. Pre-testing revealed that 

individuals in strategic positions within 

organizations are more knowledgeable 

about inter-organizational relationships and 

exchanges, which supports the validity of 

gathering data at this level. Consequently, 

responses were collected from key 

informants within the maintenance 

departments of TMIs. 

This approach aligns with established 

practices in strategic management research, 

where surveying senior executives to assess 

adoption factors of maintenance 

technologies like Predictive Maintenance 

4.0 (PdM 4.0) is common. Respondents 

rated the importance of various factors 

influencing the adoption of such 

technologies using a five-point scale, with 

endpoints labeled ‘least important’ (=1) 

and ‘most important’ (=5). Factors with an 

average importance score below 2 were 

excluded from further analysis. The 

importance scores for the remaining factors 

are summarized in Figure 2. 

 

Identification of input and output variable 

The selected variables are: strategic 

decision (SD), perceived benefit (PD), 

equipment data (ED), Organizational 

culture (OC), external pressure (EP), risk 

perception (RP). The next part provides a 

detailed description of each variable and its 

matching membership function to help 

prevent confusion among the decision 

maker's decisions. From a mathematical 

perspective, the ultimate choice is a 

function, with a collection of the six 

variables listed above serving as its 

domain. These variables are assigned 

appropriate values based on how important 

they are for a particular manufacturing 

industry (MI). Therefore, the decision 

regarding the adoption of the 

manufacturing industry (MI) technology is, 

then y = f (x1, x2, x3, x4, x5, x6). These six 

variables are categorized into two distinct 

groups based on their inherent nature, 

serving as intermediate variables. Each 

group is processed separately to produce a 

single output. The overall decision is then 

derived from a combined output, generated 

by using these two intermediate results as 

inputs, effectively transforming a multi-

objective problem into a single decision-

making process.  

The characteristics of each group are 

detailed below. Group 1 includes variables 

directly related to the intention to adopt, 

which we refer to as "adoption 

characteristics." The inputs for this group 

are: SD (Strategic Decision), PB (Perceived 
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Benefit), and ED (Equipment Data). Its 

output is termed "Adoption Intention (AI)."  

roup 2 comprises variables directly linked 

to perceptions of the usefulness of PdM 4.0, 

with inputs: OC (Organizational Culture), 

EP (External Pressure), and RP (Risk 

Perception). This group's output is called 

"Perceived Usefulness (PU)." 

The outputs from these two groups are then 

fed into a third process, which consolidates 

them into a single outcome, labeled "Actual 

Adoption (AA)." This modular framework 

effectively reduces the six variables into 

two, and subsequently condenses these into 

one final decision metric, represented as 

(c). If we denote the outputs of Group 1 and 

Group 2 as (a) and (b) respectively, the final 

output (c) is derived through a function 

shown in Equation 1.  

Mathematically: 

a = f1(x1, x2, x3), b = f2(x4, x5, x6), and c = 

f3(f1(a), f2(b)) ………………………. (1) 

 

RESULTS AND DISCUSSION 

Design of membership functions 

A fuzzy inference system was developed 

using MATLAB software, with each of the 

six variables defined alongside their 

corresponding membership functions and 

universe of discourse. Gaussian and Bell 

membership functions were used to 

characterize the shape of both input and 

output variables in the system. For each set 

of input values ( x1) through ( x6 ), the 

vectors (a), (b), and (c) were computed to 

capture the respective fuzzy outputs. 

To analyze vector (a), which involves two 

input variables and one output, the 

variables are characterized as follows: 

SD (x1): Represents the strategic decision 

regarding technology adoption by 

manufacturing industries. It is classified 

into three categories low, medium, or high 

based on how it compares to the mean 

quality level of the technology available for 

predictive maintenance. 

ED (x2): Reflects the manufacturing 

industry's capacity to collect and organize 

equipment data for predictive maintenance. 

This capability is categorized as 

Insignificant, some, or Considerable. 

 

PB (x3): Encompasses the perceived 

benefits of using predictive maintenance, 

such as cost reductions and increased 

equipment uptime. As shown in Table 1, 

these benefits are divided into none, few, or 

many, according to membership function 

levels. 

The output variable, Perceived Benefit, 

provides three possible evaluations 

regarding the suitability of a particular 

predictive maintenance approach, based on 

the aforementioned inputs. Similarly, 

vector (b) involves three input variables 

and one output: 

 

OC (x4): Organizational culture, indicating 

the manufacturing firm’s ability to promote 

knowledge transfer, training, and sharing 

among employees concerning Industry 4.0 

predictive maintenance. This is categorized 

as low, medium, or high, based on 

membership functions as per Table 2. 

 

EP (x5): External pressure, measuring the 

company's ability to handle technological 

requirements and innovations, especially 

regarding emergency service responses 

from suppliers. It is classified as 

Insignificant, some, or Considerable. 

 

RP (x6): Risk perception, or the perceived 

ability to absorb risks associated with 

adopting new technologies. It considers the 

potential reduction in severity and impact 

of such risks, categorized as Insignificant, 

some, or a lot. 

The final variable, Actual Adoption, as 

detailed in Table 2, reflects three distinct 

outcomes based on the input combinations, 

representing different levels of adoption 

readiness as per real-world scenarios. 

Design of rule base and rule viewers 

Defining the rules that will regulate these 

variables comes after developing the 

membership functions for various input and 

output variables.  
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Table 1: Rules for group 1. 

If X1(SD) And X2(ED) And (PB) Then a(AI) 

Low Insignificant None Insignificant 

Medium Some Few Some 

High Considerable Many Considerable 

High Some None Some 

Medium Considerable None Some 

Low Some Many Some 

Medium Insignificant Few Some 

Low Considerable Many Considerable 

Low Insignificant Few Insignificant 

When vector a had three inputs, there were 

originally 18 rules defined. Following 

several versions, the non-contributing rules 

were removed. Six regulations remained in 

the end. Table 1 displays these regulations. 

Rule viewers that display the values of the 

several inputs (SD, ED, and PB) to the 

model and the associated computed output 

(Adoption intention) are shown in Fig. 2. 

Following the similar approach, rules for 

vector b and c were defined. These are 

shown in Tables 1–3. Rule viewers and the 

corresponding computed outputs are shown 

in Figs. 2–4. 

 

Figure 2: Fuzzy logic result for Adoption intention. 

Table II: Rules for group 2 

If X4(OC) And X5(EP) And X6(RP) Then b(PU) 

Low Insignificant Insignificant Insignificant 

Medium Some Some To some extent 

High Considerable A lot Considerable 

High Some A lot Considerable 

Medium Some A lot Considerable 

Low Considerable Some To some extent 
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Medium Considerable Some To some extent 

Low Some A lot To some extent 

 

 

Figure 3. Fuzzy logic result for Perceived usefulness. 

Table III: Rules for Actual Adoption 

If a(AI) And b(PU) Then c(AA) 

Insignificant Insignificant Insignificant 

Some To some extent To some extent 

Some Some To some extent 

Considerable Considerable Considerable 

Considerable Considerable Considerable 

Some Considerable Considerable 

Insignificant To some extent To some extent 

Considerable To some extent To some extent 

 Table 4: Group 1 result 

Inputs SD ED PB Output adoption intention 

Low (10) Insignificant (10) None (10) Insignificant (9.56) 

Medium (50) Some (50) Few (50) Some (48) 

High (90) Considerable (90) Many (95) Considerable (93.5) 

Table 5: Group 2 result 

Inputs 

OC 

 

EP 

 

RP 

Output 

Perceive usefulness 

Low (10) Insignificant (10) Insignificant (10) Insignificant (7.13) 

Medium (55) Some (50) Some (50) To some extent (48.4) 

High (95) Considerable (95) A lot (95) Considerable (93.7) 
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Testing of fuzzy inference system. 

Every component of every vector can be 

thought of as a function of every 

component of the vector that came before 

it. Because most production systems 

involve multiple variables and can 

minimize these variables at each phase, the 

fuzzy inference approach is helpful in most 

of these systems, until actual adoption is 

achieved. 

In any industry, for the technology 

adoption evaluation process is essential 

since adoption intention account for the 

majority of implementation costs. To 

guarantee that the approach selected is fully 

effective, decision makers must make these 

selections regularly. These kinds of 

domains are ideal for fuzzy inference 

systems. Such systems are beautiful 

because they can give a set of inputs, 

produce the same result that a decision 

maker would in any given circumstance.  

In order to augment the dependability of the 

suggested system, multiple simulations 

were run in which one or more inputs were 

varied concurrently. Upon completion of 

the aforementioned simulations, multiple 

assessments were conducted at the ultimate 

phase of the suggested fuzzy inference 

systems. Using the previously established 

rules, a distinct value of x was assigned to 

each input in order to define the 

intermediate vectors. Every input's value 

was made sure to fluctuate between almost 

its lowest and highest values. To get the 

final output y in a wide range of values 

simplifies the working of the proposed 

system.  

The multiple simulations are displayed 

below with varying input values. Tables 4–

7 display the numerical and linguistic 

formats in which the system's results are 

displayed. These simulations show how the 

system functions as well as how the values 

obtained for intermediate vectors a and b 

vary. Values for vector c, or "actual 

adoption," were calculated using these 

intermediate vectors as inputs, as indicated 

in Table 6. 

 

Table 6: Actual adoption group result 

Inputs 

Adoption 

intention 

 

Perceived 

Usefullness 

Output 

Actual 

Adoption 

Insiginificant 

(10) 

Insiginificant 

(10) 

Insiginificant 

(Level 1 

maturity 

(14.1)) 

Some (40) To some 

extent (40) 

To some extent 

(Level 2 

maturity 

(48.7)) 

Some (70) To some 

extent (70) 

Considerable 

(Adopt PdM 

4.0 (70.8)) 

Considerable 

(95) 

Considerable 

(95) 

Level 3 

maturity (91.6) 

 

Table 7: Computed values for the various 

variables 

Value of the Variables Average value 

X1 (SD) 80 

X2(ED) 90 

X3 (PB) 78.5 

a (Adoption intention)  87.9 

X4 (OC) 75.7 

X5 (EP) 82.5 

X6 (RP) 92.8 

b (Perceived usefulness) 88.5 

C (Actual adoption) 88.6 

Illustrative example through a case 

study 

Suggested case study used as an example to 

demonstrate the suggested paradigm. The 

obtained information from a reputable TMI 

manufacturer of cement (not included in the 

survey). To gather data for the model, 

managers, and engineers within the 

company (from the departments of 

production, stores, and Maintenance) were 

asked to fill out a questionnaire. 

To make the terms used in the 

questionnaire clear to the respondents, 

details of definitions of terms were attached 

with the questionnaire. An average value of 

28 responses collected. 

The acquired values are utilized in Figures. 

2, 3, and 4 to determine the values of 

"Perceived Usefulness" and "Adoption 

Intention," which come out to be 87.9, 88.5, 
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and 92.5, respectively. By sliding the 

vertical lines in Fig. 4, these values were 

utilized to obtain the value for "Actual 

Adoption". The result for this value is 88.6. 

Therefore, the organization's true adoption. 

Table 7 and Figure 4 shows the computed 

values of the variables. 

 

 

 

Figure 4: Fuzzy logic result for Adoption Feasibility. 

 

Figure 5: Surface view PdM 4.0 Adoption feasibility. 

 

CONCLUSION AND 

RECOMMENDATION 

This study presents a decision support 

system for adoption of industry 4.0 

predictive maintenance by gathering 

information from a survey of fifteen 

manufacturing industries (MI) in Tanzania. 

The variables that these MIs take into 

account while assessing a certain industry 

4.0 predictive maintenance have been 

ascertained through the use of a 

questionnaire. According to the 

respondents, a multi-input single output 

according to Lau and Dwight, (2011) 

Mamdani fuzzy inference system has been 

suggested for PdM 4.0 adoption , taking 

into account the six most significant 

parameters. 

According to the literature, there is 

currently no rational process in place for the 

ongoing assessment of an industry 4.0 

technologies that supports maintenance in 

the sector being examined (Bousdekis, 
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Lepenioti, and Apostolou 2019). The 

suggested method can be highly beneficial 

to the businesses in helping them make 

judgments on technology evaluation, 

especially in light of the amount of 

maintenance costs associated with 

equipment maintenance. By simply altering 

the variables, the suggested methodology 

can be extended beyond technology 

evaluation and used to simulate the 

decision-making procedures for facility and 

service adoption.  

As the aforementioned sections 

demonstrate, the suggested approach is 

highly user-friendly for engineers and 

managers in related sectors, and they will 

find it straightforward and appropriate to 

adopt this technique. The fuzzy logic 

scheme is not without its problems, just like 

any other system(Yahya et al. 2024). To 

create fuzzy rules that will make the system 

work, field specialists' experience, 

experimental findings, and theoretical 

derivation are needed. In certain instances, 

experts might even need to be dispatched to 

the scene to confirm features that could 

impact the entire system and to fine-tune 

the hazy regulations at the outset. 

There's a chance that this activity will raise 

system development costs. Additionally, 

fuzzy reasoning lacks the concept of 

justification for fact, unlike rule-based 

systems, and trades some explanation for 

precision, reliability, and compactness. 

Using a certain sample population to create 

the model could be another way that this 

study endeavor is limited (Kafuku et al. 

2016). The study perceives that, a diverse 

population of respondents from various 

sources can expand the model's breadth of 

generalizability, also the study suggests 

that this be taken into account in 

subsequent studies. The system has certain 

limitations, as mentioned above, but there 

is no question about the potential 

advantages of implementing the suggested 

approach in Tanzania manufacturing 

industries. It is questionable if the 

suggested method is an efficient way to 

practice the art of creating the ideal system. 

Future research should therefore focus on 

issues associated with these worries. This 

study represents a meager step in that 

direction.  
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