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ABSTRACT  

Potato production plays a vital role in global agriculture as a major 

food source for large populations. However, potato crops are highly 

susceptible to diseases, particularly Early Blight and Late Blight, which 

result in substantial yield losses. Timely detection and effective control 

of these diseases are essential for maintaining stable crop output. This 

study explores the integration of Convolutional Neural Networks 

(CNNs) and advanced image processing techniques to differentiate 

between diseased and healthy potato plants accurately. Two datasets 

comprising original and enhanced images were used to train four CNN 

models: InceptionV3, Xception, Densenet201, and Resnet152V2. The 

original images underwent background removal only, whereas the 

enhanced images were further processed using contrast enhancement 

and morphological transformation in addition to background removal 

to reduce noise, improve quality, and prepare the images for analysis. 

The CNN models were trained using these datasets, with their bottom 

layers fixed and the top layers fine-tuned to improve performance and 

reduce training time. Experimental results revealed that models trained 

on enhanced images achieved a 2.45% to 4.45% improvement in 

accuracy, precision, and sensitivity compared to those trained on 

original images. Moreover, a hybrid model that combined two high-

performing CNNs achieved a 98.91% accuracy, marking up to 10.69% 

improvement over individual models. This approach offers significant 

potential for reducing crop yield losses while minimizing dependence 

on chemical treatments. 
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INTRODUCTION 

Potato farming is globally vital as a primary 

food source, yet potato plants are highly 

susceptible to such diseases as Early Blight 

and Late Blight, which can severely reduce 

yields. Timely detection and management of 

these diseases are critical for agricultural 

yield. Failure to detect plant diseases and 

pests early can result in financial losses and 

decreased productivity despite the use of 

pesticides (Ishengoma & Lyimo, 2024; 

Sharma et al., 2019). Recent breakthroughs in 

artificial intelligence (AI), particularly deep 

learning (DL) and computer vision (CV) 

have enabled data-driven disease detection 

systems that analyze plant images with high 

accuracy, helping farmers minimize the 

spread and reduce pesticide reliance. 

Utilization of these technologies, therefore, 

boosts the adoption of sustainable and 

environmentally conscious farming methods 

(Shoaib et al., 2023; Tian et al., 2020). 

Several CV studies have addressed potato 

leaf disease detection using either traditional 

machine learning (ML) (e.g., support vector 

machines (SVMs)) or DL techniques, 

specifically convolution neural networks 

(CNNs). SVM/ML-based approaches 

typically combine segmentation (e.g. K-

means, graph-cut/Otsu thresholding) and 

texture features (e.g., Gray Level Co-

occurrence Matrix (GLCM)) with classical 

classifiers. For example, (Islam et al., 2017) 

trained SVMs on 300 images from the 

publicly accessible Plant-Village dataset and 

reported a 95% accuracy; (Singh & Kaur, 

2021) used an approach that integrates K-

means, GCLM and multi-class SVM on the 

same dataset and reported a 95.99% 

accuracy; (Hou et al., 2021) extracted local 

binary patterns (LBP) features and, across 

five categories, by evaluating four classifiers 

(k-NN, SVM, ANN, and RF), trained on 

2,840 images from the AI Challenger Global 

AI Contest, achieved 97.4% with SVM. 

Moreover, (Iqbal & Talukder, 2020) used 

Plant-Village database with over 450 images 

of healthy and diseased potato leaves to 

evaluate seven classification algorithms, with 

the Random Forest classifier and achieved a 

97% accuracy. All these pipelines rely   on 

hand-crafted features and often assume 

controlled imaging conditions.    

On the other hand, the CNN-based 

approaches reduce manual feature design and 

generally improve robustness. (Khobragade 

et al., 2022) trained a CNN on a dataset of 

5,162 original and 82,592 augmented images, 

achieving a classification accuracy of 

98.07%. Nishad et al. (2022) evaluated such 

CNN models as VGG16, VGG19, and 

ResNet50 with K-means segmentation and 

augmentation for detecting and classifying 

potato leaf diseases. They utilized the Plant-

Village and Mendeley datasets containing 

2,580 images and were able to achieve an 

accuracy of 97% using VGG16 that 

outperformed the others (Nishad et al., 2022). 

(Sanjeev et al., 2021) reported a 96.5% 

accuracy using the Feed Forward Neural 

Network (FFNN) model on the Plant-Village 

dataset comprising a total of 2,152 images. 

Furthermore, Khalifa et al. (2021), proposed 

a CNN hierarchical architecture comprising 

14 layers among which are two principal 

convolutional layers, tasked with extracting 

features, as well as two fully connected layers, 

for classification. The model underwent 

training using a dataset consisting of 1,722 

images, and achieved a mean accuracy of 

98.00% (Khalifa et al., 2021). 

Collectively, prior studies depict high 

accuracy under controlled imaging, but most 

apply limited preprocessing techniques and 

evaluate only individual architectures 

separately, leaving open the questions 

whether selective image enhancement can 

improve CNN performance and how best to 

combine the various models. To address this 

gap, we integrate an image enhancement 

pipeline, including background removal, 

contrast adjustment, and morphological 

transformations (erosion and opening), with 

modern CNNs. We then train identical 

architectures on two matched datasets; a 

baseline set with background removal only 

and an enhanced set with additional contrast 

and morphology.   

The contributions of our work are threefold, 

namely; 
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● A targeted image-enhancement 

pipeline, background removal, 

contrast adjustment, and 

morphological transformations 

(erosion/opening), tailored to visible 

symptoms of leaf diseases. 

● A controlled comparison that trains 

identical CNN backbones on original 

versus enhanced images to quantify 

the effect of preprocessing. 

● A lightweight parallel hybrid that 

fuses the two best-performing CNNs 

to improve accuracy and stability. 

On a three-class potato leaf dataset (healthy, 

early blight, late blight), targeted 

enhancement consistently improved single-

model accuracy, precision, and recall by 

2.45% to 4.45%. A parallel hybrid that fuses 

the two top-performing CNNs achieved 

98.91% accuracy, which is 10.69% higher 

than the lowest-performing individual model 

(88.22%). Taken together, these results 

indicate that principled preprocessing, by 

reducing image noise and improving pattern 

recognition on potato leaves, mitigates 

residual errors in CNN classifiers, and that a 

simple two-stream hybrid further improves 

reliability without heavy architectural 

changes. 

The remaining sections of this work are 

organized as follows. The following Section 

describes the materials and methods, while 

the third section provides a description of the 

experimental setup. Section 4 contains the 

discussion and results of the experiment, and 

Section 5 concludes the study. 

 

MATERIALS AND METHOD 

Dataset 

The study used a potato leaf disease dataset 

that is publicly available and can be accessed 

from Kaggle (Muhammad et al., 2020.; 

Rashid et al., 2021). The potato dataset 

contains 4072 images with 256x256 pixels 

that are divided into three categories: Early 

blight (Eab) with 1628 images, Healthy (He) 

with 1020 images, and Late blight (Lab) with 

1412 images. Figure 1 shows the three image 

categories of potato leaves taken in a 

controlled environment.  

 
Figure 1: Potato leaf dataset (a) Early blight (b) 

Healthy (c) Late blight 

Preprocessing method 

We applied four preprocessing techniques to 

reduce image noise and highlight disease-

related features: background removal, 

contrast enhancement, threshold 

segmentation, and morphological 

transformation (erosion and morphological 

opening), as illustrated in Figure 2. 

Background removal eliminates non-leaf 

areas, ensuring the model focuses on the leaf 

itself and avoids misleading textures. Contrast 

enhancement adjusts brightness and contrast, 

helping early CNN layers capture meaningful 

patterns more effectively. Thresholding 

generates a clean leaf mask, preventing 

background pixels from being included after 

segmentation. Erosion, the most effective 

method, removes small bright specks and 

trims noisy edges, sharpening lesion 

boundaries and enhancing feature clarity. 

Opening (erosion followed by dilation) 

breaks thin objects and smooths outlines but 

can also remove fine lesion details, which 

accounts for its slightly lower accuracy 

compared to erosion alone. 

Backgrounds were removed using Python’s 

“rembg” function, which applies a neural 

network model trained on a large dataset to 

remove backgrounds, thus reducing 

distracting noise. Next, we normalize 

exposure with contrast adjustment using 

equations (1) - (3). For each image, we 

compute its mean brightness 𝐵 , set 𝐵𝑟𝑒𝑓  to 

the maximum per-image mean brightness on 

the training dataset, and rescale pixel 

intensities by the maximal intensity factor 

(IF), determined as 𝐼𝐹 =
𝐵𝑟𝑒𝑓

𝐵
 with values 

clipped to [0, 255] (Demonstrated in Figure 

   

(a)  (b)  (c)  
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3(a) and (b)). We then threshold the contrast-

adjusted image to isolate the leaf foreground, 

operating per channel and combining masks 

as in equations (4) - (6); this step further 

suppresses background and makes 

foreground patterns more prominent. 

Finally, we apply morphological 

modification techniques to the thresholded 

image; the morphological-erosion and 

morphological-opening (erosion followed by 

dilation) to reduce small artifacts and smooth 

boundaries (as shown in Figure 3(c), (d), and 

(e)).  

We evaluate two morphology variants; 

erosion-only and morphological opening, and 

the full preprocessing workflow is outlined in 

algorithm 1. It is worth noting that standalone 

dilation was not applied in our study. 

Although dilation can link bright regions or 

enhance features, in our setting it increased 

regional brightness and reduced efficiency, 

so we restrict its use to the dilation step 

within opening only. 

𝐵 =
1

𝑊𝐻
∑ ∑ 𝐼(𝑥, 𝑦)𝐻

𝑦=1
𝑊
𝑥=1   (1) 

𝐼𝐹 =
𝐵𝑟𝑒𝑓

𝐵
    (2) 

𝐼′(𝑥, 𝑦) =

𝑐𝑙𝑖𝑝(𝐼𝐹𝐼(𝑥, 𝑦), 0, 255) 

(3) 

𝑀𝑐(𝑥, 𝑦)

= {
1,            𝐼𝑐

′(𝑥, 𝑦) > 𝑇𝑐  
0,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑐

∈ {𝑅, 𝐺, 𝐵} 

(4) 

𝑀(𝑥, 𝑦) =𝑀𝑅 (𝑥, 𝑦)∨ 𝑀𝐺 (𝑥, 𝑦)∨

𝑀𝐵(𝑥, 𝑦) 

(5) 

𝐼𝑆(𝑥, 𝑦) = 𝐼′(𝑥, 𝑦)⋅𝑀(𝑥, 𝑦) (6) 

     

     

     

(a)  (b)  (c)  (d)  (e)  

 Figure 2: The pre-processing procedure used (a) Original image (b) Background removal (c) 

Brightness enhanced (d) Morphological transformation-erosion (e) Morphological 

transformation-open. 
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Whereby; 𝐼(𝑥, 𝑦) ∈ [0,255]  is the input 

intensity; 𝑊 × 𝐻 is image size in pixel and 

𝑐𝑙𝑖𝑝(𝑣, 0,255) = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑣, 0),255).  The 

thresholds 𝑇𝑐 can either be fixed or computed 

by Otsu. In our study, we adopt fixed global 

thresholds 𝑇𝑅  , 𝑇𝐺 , and 𝑇𝐵  selected on the 

training set. 

1. Equation (1) computes the average 

brightness of the image as the summation 

of all pixel intensities divided by the 

number of pixels. 

2. Equation (2) defines an image-specific 

scaling factor. If the image is darker than 

the reference (i.e., 𝐵 < 𝐵𝑟𝑒𝑓 ), then 𝐼𝐹 >

1  and pixels will be brightened; if 

brighter,  𝐼𝐹 < 1  and pixels will be 

dimmed. 

3. Equation (3) rescales each scale by  𝐼𝐹 

and clips the result to the valid 8-bit range 

[0,255], producing the contrast adjusted 

image 𝐼′. 

4. Equation (4) builds a binary mask per 

channel (R, G, B), marking pixel as 

foreground (assigned value 1) where the 

contrast-adjusted value exceeds the 

channel threshold 𝑇𝑐 ; otherwise 

background (value 0). 

5. Equation (5) combines the three masks 

with a logical OR to get a single 

foreground mask 𝑀. 

6. Equation (6) applies the mask to the 

contrast-adjusted image, keeping 

foreground pixels (where 𝑀 = 1 ) and 

zero out background, yielding the 

segmented image 𝐼𝑆 used for morphology. 

 

Algorithm 1: Image Preprocessing Pipeline (background removal, contrast adjustment, 

thresholding, morphology) 

Step 1 Insert a 256x256 image. 

Step 2 Using the rembg function, remove the background from the image 

Step 3 Use Equation (1), to calculate the image’s mean brightness 𝐵  

Step 4 Use Equation (2) to calculate the 𝐼𝐹 as 𝐵𝑟𝑒𝑓/𝐵, whereby 𝐵𝑟𝑒𝑓 is the precomputed 

training-set reference brightness. 

Step 5 Use Equation (3) to compute contrast adjustment (rescaling by 𝐼𝐹 and clip to 

[0, 255]) to obtain the enhanced image 𝐼′. 

Step 6 Separate the enhanced image 𝐼′ into red, green, and blue channels to create three 

grayscale images. 

Step 7 Use Equations (4) to (6), to threshold each channel to build masks, combine the 

masks, and apply the combined mask to get the segmented image. 

Step 8 Apply erosion on the image created in Step 7 with a 2x2 kernel. 

Step 9 Combine the eroded channel images from Step 8 to create the eroded three-

channel image. 

Step 10 Apply dilation to the images from Step 8 with a 2x2 kernel (for the opening 

variant). 

Step 11 Combine the images from Step 10 to get the dilated three-channel image. 

Note: Stop after Step 9 for the erosion-only variant; continue through Step 11 for the 

morphological opening variant. 
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Figure 3: Comparison of images (a) Brightness 

enhanced (b) Threshold segmentation (c) 

Morphological-open (d) Morphological-

erosion. 

Convolution Neural Network 

CNN plays a vital role in the field of DL and 

is widely utilized in the domain of computer 

vision. CNNs can detect visual patterns 

inside picture pixels with minimal 

preprocessing (Alzubaidi et al., 2021; 

Kattenborn et al., 2021; Tian et al., 2020). As 

a result, they have been widely employed in 

research endeavors pertaining to image-

based detection.  

In this study, we selected InceptionV3, 

Xception, DenseNet201, and ResNet152V2 

to provide a diverse evaluation of CNN 

architectures. InceptionV3 was chosen for its 

ability to capture multi-scale features through 

parallel convolutional filters, making it 

suitable for detecting complex disease 

patterns (He et al., 2016). Xception employs 

depthwise separable convolutions, offering 

computational efficiency while maintaining 

strong feature extraction (Chollet, 2016). 

DenseNet201 leverages dense connectivity to 

promote feature reuse and mitigate vanishing 

gradients, which is advantageous when 

working with limited datasets (Huang et al., 

2017). ResNet152V2, with its very deep 

residual learning framework, enables robust 

representation learning and effectively 

handles complex image variations (He et al., 

2015). Together, these models represent 

complementary design strategies multi-scale 

feature learning, efficiency, dense 

connectivity, and deep residual learning 

providing a comprehensive basis for 

evaluating performance in crop disease 

classification. 

The GoogleNet architecture presents a viable 

alternative to CNNs with the incorporation of 

an inception module, which introduces 

supplementary layers. The GoogleNet 

architecture employs a substitution of average 

pooling for fully connected layers located at 

the topmost portion of the convolutional 

network, leading to a notable decrease in the 

number of parameters (Szegedy et al., 2016). 

The architectural design of GoogleNet was 

built with the primary aim of reducing energy 

consumption and optimizing memory 

utilization. This study additionally examines 

InceptionV3, a model that is expected to 

supersede both InceptionV1 and InceptionV2 

(He et al., 2016). The Xception on the other 

hand exhibited superior performance 

compared to InceptionV3, despite both 

models having an equal number of 

parameters. This notable difference in 

performance was observed specifically on the 

largest dataset. The main improvement in this 

model involves the substitution of 

conventional convolution layers with depth-

wise separable convolutions. This 

modification entails decomposing the 

convolution operation into two distinct 

components: depth-wise convolutions and 

point-wise convolutions. This methodology 

effectively decreases the quantity of 

parameters and computations, while also 

upholding or enhancing the accuracy of the 

model (Chollet, 2016). 

Huang et al., proposed the DenseNet-201 

model, which is an expanded version of the 

DenseNet framework that exhibits dense 

connectivity patterns between layers. The 

architectural design, consisting of a total of 

201 layers, effectively improves the 

utilization of features and the flow of 

gradients, all while ensuring computational 

efficiency (Huang et al., 2017). 

Consequently, this design exhibits 

exceptional performance in the domain of 

picture classification tasks. 

ResNet model was proposed by Zhang, et al. 

to overcome the vanishing gradient problem 

  

(a)  (b)  

  

(c)  (d)  
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in deep neural networks. The model 

incorporates residual blocks with skip 

connections, allowing for the training of 

exceptionally deep networks. This approach 

has demonstrated notable success in the 

realm of image recognition applications (He 

et al., 2015). 

The CNN design is made up of three types of 

layers: convolution layers, pooling layers, 

and fully connected layers (FC). In a neural 

network, feature extraction is achieved using 

convolution and pooling layers, whereas the 

subsequent step of mapping these features 

into the final output, which is frequently 

represented by a softmax function, is 

accomplished using an FC layer. The CNN-

based models presented in this study use 

input images with dimensions of 150x150 

pixels, as shown in Figure 4. Convolutional 

techniques are applied to these images before 

they are connected to an FC layer of size 128. 

On the other hand, Figure 5 shows a hybrid 

CNN model with two models stacked in 

parallel and sharing the input data as well as  

output, which is connected with FC layers 

with 128 neurons and a softmax layer as an 

output. 

EXPERIMENTAL SETUP 

The framework of the proposed method is 

shown in Figure 6 with a 256 x 256-pixel input 

image. The input images are sent through the 

background removal block to keep the 

required section before being routed through 

the contrast enhancement block. This block 

computes the greatest intensity acquired from 

all images and uses it as the lowest intensity 

for all images. These RGB (red-green-blue) 

images are divided into three grayscale 

channels, and the threshold approach is used 

to separate the foreground and background. It 

is necessary to separate images into grayscale 

because morphological transformation 

procedures are applied to grayscale images. 

At this stage, morphological erosion is used 

first, followed by dilation as illustrated in 

Algorithm. The process of performing the 

erosion followed by dilation is known as 

Morphological-open. Later, the three 

grayscale image channels are combined to 

generate the RGB images that are sent into the 

CNN-based models. For quicker processing, 

the model’s input block converts images to 

150 x 150 pixels. Four sets of data are used to 

Figure 5:Convolution neural network architecture. 

Figure 4:Proposed Hybrid convolution neural network architecture. 
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train models using the InceptionV3, 

Xception, DenseNet201, and ResNet152V2 

for good comparison: original images, 

contrast enhanced images, morphological-

erosion, and morphological-open. After 

testing the CNN-based models on four 

different sets of data, the images trained on 

morphological erosion outperformed the 

others by up to 4.45%. For further 

improvement and comparing with the state-

of-the-art methods, the two models that 

performed better were merged in parallel 

using the same input and attained an overall 

accuracy of 98.91% and 0.98 of F1 score. The 

Adam optimizer was used for the training, 

with a 32-fixed batch size, a learning rate of 

0.001, and a dropout rate of 0.15. All models 

were trained on a system powered by an Intel 

Core i5-7200u CPU (2.50 GHz, 2.71 GHz) 

and 16 GB of RAM. Furthermore, multiple 

augmentation techniques such as vertical flip, 

zoom range 0.5, and rotation for 90 degrees 

were applied during training for good 

generalization. 

Evaluation Parameters 

To evaluate the classification models, we use 

four parameters listed in equations 7-10, 

namely accuracy (Acc), precision (Pre), recall 

(Rec), and F1-score (F1). Accuracy measures 

the ratio of correctly classified images to the 

total number of images. Precision indicates 

the proportion of images predicted as a 

specific disease that are truly correct, meaning 

a high precision corresponds to fewer false 

positives. Recall represents the proportion of 

diseased images that are correctly identified, 

where a higher recall reduces false negatives. 

Finally, the F1-score combines precision and 

recall into a single measure, making it 

especially valuable when class distributions 

are imbalanced, as it reflects the model’s 

ability to minimize both false positives and 

false negatives. 

𝐴𝑐𝑐 =
𝑇𝑁𝑒 + 𝑇𝑃𝑜

𝑇𝑁𝑒 + 𝑇𝑃𝑜 + 𝐹𝑃𝑜 + 𝐹𝑁𝑒
 

(7) 

Figure 6: Framework of the proposed method. 
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𝑃𝑟𝑒 =
𝑇𝑃𝑜

𝑇𝑃𝑜 + 𝐹𝑃𝑜
 

(8) 

𝑅𝑒𝑐 =
𝑇𝑃𝑜

𝑇𝑃𝑜 + 𝐹𝑁𝑒
 

(9) 

𝐹1 = 2((𝑃𝑟𝑒 . 𝑅𝑒𝑐)/(𝑃𝑟𝑒 + 𝑅𝑒𝑐)) (10) 

The term "True Negative (TNe)" refers to the 

accurate prediction of the negative class by 

the model. A True Positive (TPo) refers to a 

situation where the model accurately predicts 

the positive class. A false negative (FNe) refers 

to an incorrect prediction made by the model 

regarding the negative class. A false positive 

(FPo) refers to a situation where a model 

incorrectly predicts a positive class. 

 

  

(a)  (b)  

Figure 7:Models trained on original images which are InceptionV3, Xception, DenseNet201, and 

ResNet152V2. (a) Accuracy (b) Loss.

  

(a)  (b)  

Figure 8:Models trained on contrast-enhanced images which are InceptionV3-cen, Xception-cen, 

DenseNet201-cen, and ResNet152V2-cen. (a) Accuracy (b) Loss.

EXPERIMENTAL RESULTS AND 

DISCUSSION 

This section presents the experimental results 

of four sets of data, namely original images 

and three types of enhanced images: contrast 

enhanced, morphological erosion, and 

morphological-open. Additionally, this 

section discusses the comparison between the 

suggested method and current methods. 
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Experimental results 

Figure 7 (a) and (b) show the accuracy and 

loss of models trained on the original images, 

which are InceptionV3, Xception, 

DenseNet201, and ResNet152V2. The 

average accuracy rates for the InceptionV3, 

Xception, DenseNet201, and ResNet152V2 

models were 88.22%, 88.89%, 92.44%, and 

90.22%, respectively, with mean losses of 

0.35, 0.31, 0.23, and 0.28. 

Figure 8 (a) and (b) show the accuracy and 

loss performance metrics of the models 

trained on contrast-enhanced images. These 

models are known as InceptionV3-cen, 

Xception-cen, DenseNet201-cen, and 

ResNet152V2-cen in this study. The average 

accuracy rates for the InceptionV3-cen, 

Xception-cen, DenseNet201-cen, and 

ResNet152V2-cen models, with mean losses 

of 0.33, 0.30, 0.18, and 0.28, were 88.67%, 

89.78%, 93.56%, and 90.33%, respectively. 

Figure 9 (a) and (b) show the accuracy and 

loss metrics of models trained on images 

enhanced with morphological erosion. These 

models are referred to as InceptionV3-mer, 

Xception-mer, DenseNet201-mer, and 

ResNet152V2-mer in this study. With mean 

losses of 0.24, 0.23, 0.12, and 0.25, the 

average accuracy rates for the InceptionV3-

mer, Xception-mer, DenseNet201-mer, and 

ResNet152V2-mer models were 91.11%, 

92.45%, 96.89%, and 92.67%, respectively. 

Figure 10 (a) and (b) show the accuracy and 

loss metrics of models trained on images 

enhanced with morphological open. These 

models are known as ResNet152V2-mop, 

DenseNet201-mop, Xception-mop, and 

InceptionV3-mop in this study. The average 

accuracy rates for the InceptionV3-mop, 

Xception-mop, DenseNet201-mop, and 

ResNet152V2-mop models were 89.11%, 

90.24%, 93.33%, and 88.89%, respectively, 

with mean losses of 0.36, 0.27, 0.21, and 0.34. 

 

  
(a)  (b)  

Figure 9:Models trained on images enhanced with morphological erosion methods which are 

InceptionV3-mer, Xception-mer, DenseNet201-mer, and ResNet152V2-mer. (a) Accuracy (b) 

Loss.
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(a)  (b)  

Figure 10:Models trained on images enhanced with morphological open method which are 

InceptionV3-mop, Xception-mop, DenseNet201-mop, and ResNet152V2-mop. (a) Accuracy (b) 

Loss

On the other hand, Table 1 through Table 5 

shows the confusion matrices of the models 

trained on the four sets of data. Table 1 

presents an overview of the InceptionV3, 

Xception, DenseNet201, and ResNet152V2 

models. The InceptionV3 model exhibited 

poor performance, achieving an accuracy rate 

of 88.22%, when compared to the other three 

models. In contrast, the DenseNet201 model 

demonstrated the highest accuracy rate of 

92.44%, surpassing both the Xception and 

ResNet152V2 models, which achieved 

accuracy rates of 88.89% and 90.22% 

respectively. Additionally, the Eab class in 

InceptionV3 has a poor recall of 0.82, while 

the He class has a low precision of 0.76 and 

an F1 score of 0.86. The precision, recall, and 

F1-score of the remaining classes vary 

between 0.83 and 0.99. In contrast, the 

precision, recall, and F1- score of the classes 

in the DenseNet201 model exhibit a range of 

values ranging from 0.9 to 0.95. 
 

Table 1: Confusion matrix of all models trained on original images. 

Class  Accuracy 

(%) 

Precision Recall F1-

score 

Improveme

nt (%) Eab He Lab 

InceptionV3 

Eab 123 24 3  

88.22 

0.99 0.82 0.90  

- He 0 149 1 0.76 0.99 0.86 

Lab 1 24 125 0.97 0.83 0.90 

Xception 

Eab 135 9 6  

88.89 

0.89 0.90 0.89  

- He 9 133 8 0.88 0.89 0.88 

Lab 8 10 132 0.90 0.88 0.89 

DenseeNet201 

Eab 139 5 6  

92.44 

0.95 0.93 0.94  

- He 7 138 5 0.90 0.92 0.91 

Lab 1 10 139 0.93 0.93 0.93 

ResNet152V2 

Eab 130 7 13  

90.22 

1.00 0.87 0.93  

- He 0 130 20 0.92 0.87 0.89 

Lab 0 4 146 0.82 0.97 0.89 

Table 2 shows the confusion matrix for the 

InceptionV3-cen, Xception-cen, 

DenseNet201-cen, and ResNet152V2-cen 

models. The InceptionV3-cen model showed 

poor performance, with an accuracy rate of 

88.67%. In comparison, the DenseNet201-



CNN-Based Hybrid Model for Detecting Blight Diseases in Potato Crops with Advanced Image Processing 

Techniques 

Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 44 (No. 3), Aug. 2025 28 

 

cen model demonstrated the highest 

accuracy rate of 93.56% when compared to 

the Xception-cen and ResNet152V2-cen 

models, which achieved accuracy rates of 

89.78% and 91.78%, respectively 

Additionally, it is observed that the He class 

of the InceptionV3-cen model has a 

precision value of 0.78. Similarly, the Lab 

class demonstrates a low F1 score of 0.79 

and a recall value of 0.87. The precision, 

recall, and F1-score of the other classes vary 

between 0.89 and 0.97. In contrast, the 

precision, recall, and F1-score of the classes 

of the DenseNet201-cen model exhibit a 

range of values spanning from 0.92 to 0.95. 

The empirical findings indicate that the 

utilization of contrast enhancement pre-

processing techniques resulted in an 

enhancement of model performance ranging 

from 0.45% for InceptionV3-cen to 1.56% 

for ResNet152V2-cen. 

 

Table 2: Confusion matrix of all models trained on contrast enhanced images. 

Class  Accuracy (%) Precision Recall F1-

score 

Improveme

nt (%) Eab He Lab 

InceptionV3-cen 

Eab 134 15 1  

88.67 

0.96 0.89 0.92  

0.45 He 1 146 3 0.78 0.97 0.87 

Lab 5 26 119 0.97 0.79 0.87 

Xception-cen 

Eab 137 8 5  

89.78 

0.95 0.91 0.93  

0.89 He 4 136 10 0.85 0.91 0.88 

Lab 3 16 131 0.90 0.87 0.89 

DenseNet201-cen 

Eab 141 5 4  

93.56 

0.92 0.94 0.93  

1.12 He 6 140 4 0.94 0.93 0.94 

Lab 6 4 140 0.95 0.93 0.94 

ResNet152V2-cen 

Eab 134 5 11  

91.78 

1.00 0.89 0.94  

1.56 He 0 132 18 0.94 0.88 0.91 

Lab 0 3 147 0.84 0.98 0.90 

Table 3 shows the confusion matrix 

pertaining to the InceptionV3-mer, 

Xception-mer, DenseNet201-mer, and 

ResNet152V2-mer models. Among the 

three models evaluated, the Xception-mer 

model exhibited the lowest accuracy rate of 

90.45%. Conversely, the DenseNet201-mer 

model demonstrated strong performance, 

with an accuracy rate of 94.89%. This 

surpassed the accuracy rates of the 

ResNet152V2-mer and InceptionV3-mer 

models, which achieved accuracy levels of 

90.67% and 91.11% respectively. 

Furthermore, it is worth noting that the He 

class of InceptionV3-mer exhibits a 

precision value of 0.83. On the other hand, 

the Lab class showcases a relatively lower 

recall value of 0.81 and an F1-score of 0.88. 

The precision, recall, and F1-score of the 

remaining classes exhibit a range of values 

ranging from 0.90 to 0.97. On the other hand, 

the DenseNet201-mer model demonstrates 

class precision, recall, and F1-score values 

ranging from 0.95 to 1.00. The experimental 

results indicate that the utilization of 

erosion-based pre-processing techniques 

resulted in a notable improvement in model 

performance, ranging from 2.45% for 

ResNet152V2-mer to 4.45% for 

InceptionV3-mer.  
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Table 3: Confusion matrix of all models trained on Morphological erosion images 

Class  Accuracy 

(%) 

Precision Recall F1-score Improve

ment (%) Eab He Lab 

InceptionV3-mer 

Eab 141 6 3  

91.11 

0.96 0.94 0.95  

2.89 He 2 147 1 0.83 0.98 0.90 

Lab 4 24 122 0.97 0.81 0.88 

Xception-mer 

Eab 139 6 5  

92.45 

0.97 0.93 0.93  

3.56 He 2 142 6 0.89 0.95 0.89 

Lab 3 12 135 0.92 0.90 0.89 

DenseeNet201-mer 

Eab 144 2 4  

96.89 

1.00 0.96 0.98  

4.45 He 0 148 2 0.95 0.99 0.97 

Lab 0 6 144 0.96 0.96 0.96 

ResNet152V2-mer 

Eab 143 6 1  

92.67 

0.97 095 0.96  

2.45 He 2 146 2 0.85 0.97 0.91 

Lab 3 19 128 0.98 0.85 0.91 

 

The confusion matrix for the models 

InceptionV3-mop, Xception-mop, 

DenseNet201- mop, and ResNet152V2-

mop is shown in Table 4. The InceptionV3-

mop model performed poorly, with an 

accuracy rate of 89.11%. When compared to 

the Xception-mop and ResNet152V2-mop 

models, which achieved accuracy rates of 

90.24% and 88.89%, respectively, the 

DenseNet201-mop model achieved the 

highest accuracy rate of 93.33%. In 

addition, the He class of the InceptionV3-

mop model has a precision value of 0.80, 

indicating a high number of false positives. 

Similarly, the Lab class has a poor recall 

score of 0.79, indicating that it has a high 

number of false negatives. Additionally, the 

Lab and He classes both achieved an F1-

score of 0.88. The other classes' precision, 

recall, and F1-score range from 0.89 to 1.00. 

The precision, recall, and F1-score of the 

classes in the DenseNet201-mop model, on 

the other hand, range from 0.88 to 0.99. 

The experimental results indicate that the 

performance of models trained with 

InceptionV3-mop, Xception-mop, and 

DenseNet201-mop improves by 0.89%, 

1.35%, and 0.89%, respectively, when 

compared to models trained with original 

images. Surprisingly, the performance of 

ResNet152V2-mop dropped by 1.33% when 

compared to ResNet152V2. In addition, it 

was observed that the performance of these 

models was lower by a margin of 2% to 

3.56% when compared to models trained 

using morphological erosion. 

Morphological erosion method 

outperformed opening method because its 

sharpened lesion boundaries and removed 

small background noise without excessively 

altering the leaf structure. This allowed the 

model to focus on more discriminative 

disease patterns, leading to better feature 

learning. In contrast, opening (erosion 

followed by dilation) tended to smooth 

edges and eliminate fine lesion details, 

which reduced the availability of critical 

texture information for classification. As a 

result, erosion preserved key features while 

minimizing noise, yielding higher accuracy 

and lower loss. 

 

Table 4: Confusion matrix of all models trained on Morphological-open images. 

Class  Accuracy 

(%) 

Precision Recall F1-

score 

Improve

ment (%) Eab   He Lab 
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InceptionV3-mop 

Eab 134 16 0 89.11 0.92 0.89 0.91  

0.89 He 2 148 0 0.80 0.99 0.88 

Lab 10 21 119 1.00 0.79 0.88 

Xception-mop 

Eab 138 8 4 90.24 0.93 0.92 0.92  

1.35 He 4 139 7 0.86 0.93 0.89 

Lab 7 14 129 0.92 0.86 0.89 

DenseeNet201-mop 

Eab 138 4 8 93.33 0.99 0.92 0.96  

0.89 He 0 138 12 0.94 0.92 0.93 

Lab 1 5 144 0.88 0.96 0.92 

ResNet152V2-mop 

Eab 120 18 12 88.89 0.98 0.80 0.88  

-1.33 He 2 139 9 0.84 0.93 0.88 

Lab 1 8 141 0.87 0.94 0.90 

To compare the proposed approach to 

current approaches, a hybrid CNN model 

was created by combining the two models 

that performed well which are 

DenseNet201-mer and ResNet152V2-mer. 

These models were joined in parallel and 

shared the same input and output. The 

hybrid CNN model was trained for 30 

epochs and achieved an average accuracy of 

98.91%, with a loss of 0.101 as shown in 

Figure 11 (a) and (b). 

 

 
 

(a)  (b)  

Figure 11: Accuracy and loss of the models trained on improved images (a) Hybrid CNN 

accuracy, (b) Hybrid CNN loss.

Table 5 shows the results of the proposed 

method; the model achieved an overall 

accuracy of 98.91%, representing a 10.67 

improvement over InceptionV3. 

Furthermore, the class precision ranges from 

0.98 to 1, the recall is 0.99, and the F1-score 

ranges from 0.98 to 0.99. It is worth noting 

that the Eab class outperformed the others, 

with precision score of 1 and recall and F1-

scores of 0.99. Table 6 presents a comparative 

analysis of the performance of the proposed 

model and the existing state-of-the-art 

methodologies found in the literature for the 

purpose of classifying potato leaves. The 

table's data shows that the models provided in 

this study perform better than any previously 

recommended approaches. The proposed 

models achieved a precision level of 98.91%. 
 

Table 5: Confusion matrix of the proposed hybrid CNN model 



F. S. Ishengoma et. al., (2025), doi: 10.52339/tjet.v44i3.1364 

 

31 Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 44 (No. 3), Aug. 2025 

 

Class  Accuracy 

(%) 

Precisio

n 

Recall F1-score Improvement 

(%) Eab He Lab 

Eab 148 1 1  

98.91 

1.00 0.99 0.99  

10.69 He 0 149 1 0.98 0.99 0.98 

Lab 0 2 148 0.99 0.99 0.99 

Table 6: Comparative analysis of the performance of the proposed model and other models 

Method Applied Technique (s) Plant disease 

(Classes) 

Classification 

Accuracy 

Proposed Hybrid-CNN  

 

 

 

 

 

 

Potato (3) 

 

98.91 

Khobragade et al., (2022) CNN 98.07 

Khalifa et al., (2021) CNN 98.00 

Iqbal & Talukder, (2020) RF 97 

Nishad et al., (2022) CNN 97 

Sanjeev et al, (2021) FFNN 96.5 

Singh A and Kaur H, (2021)  Multiclass SVM 95.99 

Islam et al, (2017) SVM 95.00 

Hou et al., (2021)  SVM Potato (5) 97.4 

CONCLUSION 

This study presented a method for detecting 

disease-induced patterns on potato leaves 

using efficient integration of CNN-based 

image processing and pre-processing 

techniques. By applying enhancement 

procedures such as background removal, 

contrast improvement, and morphological 

transformations (erosion and morphological 

open), the visibility of disease patterns on 

potato leaves was improved. The models 

trained on these enhanced images, 

particularly those processed with 

morphological transformation-erosion 

techniques, outperformed those trained on 

original images, depicting a 2.45% to 4.45% 

improvement in accuracy and F1-score. To 

further enhance the performance, the two best 

models, Densenet201-mer and Resnet152-

mer, were combined in parallel to create a 

hybrid CNN model, which achieved an 

accuracy of 98.91% and an average F1-score 

of 0.98, representing a 10.69% improvement. 

This approach demonstrates the potential to 

transform disease detection in potato crops, 

reducing yield losses and minimizing the need 

for chemical interventions. The main 

limitation of this study lies in the sensitivity 

of the detection technique to background 

noise. When applied to images with complex 

or cluttered backgrounds, the method often 

misidentifies features, reducing its 

effectiveness under field conditions where 

such interference is common. For real-time 

image processing, background removal 

becomes necessary to improve detection, but 

this step introduces additional delays. Future 

work could explore the impact of these 

morphological transformations on a wider 

range of crop types to broaden the 

applicability of this approach. 
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