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ABSTRACT

Potato production plays a vital role in global agriculture as a major ARTICLE INFO
food source for large populations. However, potato crops are highly | Submitted: Oct. 21, 2024
susceptible to diseases, particularly Early Blight and Late Blight, which
result in substantial yield losses. Timely detection and effective control | Revised: Aug. 18, 2025
of these diseases are essential for maintaining stable crop output. This
study explores the integration of Convolutional Neural Networks | Accepted: Aug. 30, 2025
(CNNs) and advanced image processing techniques to differentiate
between diseased and healthy potato plants accurately. Two datasets | Published: Oct. 2025
comprising original and enhanced images were used to train four CNN
models: InceptionV3, Xception, Densenet201, and Resnet152V2. The
original images underwent background removal only, whereas the
enhanced images were further processed using contrast enhancement
and morphological transformation in addition to background removal
to reduce noise, improve quality, and prepare the images for analysis.
The CNN models were trained using these datasets, with their bottom
layers fixed and the top layers fine-tuned to improve performance and
reduce training time. Experimental results revealed that models trained
on enhanced images achieved a 2.45% to 4.45% improvement in
accuracy, precision, and sensitivity compared to those trained on
original images. Moreover, a hybrid model that combined two high-
performing CNNs achieved a 98.91% accuracy, marking up to 10.69%
improvement over individual models. This approach offers significant
potential for reducing crop yield losses while minimizing dependence
on chemical treatments.

Keywords: Potato, convolution neural network, morphological transformation, image processing.
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INTRODUCTION

Potato farming is globally vital as a primary
food source, yet potato plants are highly
susceptible to such diseases as Early Blight
and Late Blight, which can severely reduce
yields. Timely detection and management of
these diseases are critical for agricultural
yield. Failure to detect plant diseases and
pests early can result in financial losses and
decreased productivity despite the use of
pesticides (Ishengoma & Lyimo, 2024;
Sharmaetal., 2019). Recent breakthroughs in
artificial intelligence (Al), particularly deep
learning (DL) and computer vision (CV)
have enabled data-driven disease detection
systems that analyze plant images with high
accuracy, helping farmers minimize the
spread and reduce pesticide reliance.
Utilization of these technologies, therefore,
boosts the adoption of sustainable and
environmentally conscious farming methods
(Shoaib et al., 2023; Tian et al., 2020).

Several CV studies have addressed potato
leaf disease detection using either traditional
machine learning (ML) (e.g., support vector
machines (SVMs)) or DL techniques,
specifically convolution neural networks
(CNNs).  SVM/ML-based  approaches
typically combine segmentation (e.g. K-
means, graph-cut/Otsu thresholding) and
texture features (e.g., Gray Level Co-
occurrence Matrix (GLCM)) with classical
classifiers. For example, (Islam et al., 2017)
trained SVMs on 300 images from the
publicly accessible Plant-Village dataset and
reported a 95% accuracy; (Singh & Kaur,
2021) used an approach that integrates K-
means, GCLM and multi-class SVM on the
same dataset and reported a 95.99%
accuracy; (Hou et al., 2021) extracted local
binary patterns (LBP) features and, across
five categories, by evaluating four classifiers
(k-NN, SVM, ANN, and RF), trained on
2,840 images from the Al Challenger Global
Al Contest, achieved 97.4% with SVM.
Moreover, (Igbal & Talukder, 2020) used
Plant-Village database with over 450 images
of healthy and diseased potato leaves to
evaluate seven classification algorithms, with
the Random Forest classifier and achieved a

97% accuracy. All these pipelines rely on
hand-crafted features and often assume
controlled imaging conditions.

On the other hand, the CNN-based
approaches reduce manual feature design and
generally improve robustness. (Khobragade
et al., 2022) trained a CNN on a dataset of
5,162 original and 82,592 augmented images,
achieving a classification accuracy of
98.07%. Nishad et al. (2022) evaluated such
CNN models as VGG16, VGG19, and
ResNet50 with K-means segmentation and
augmentation for detecting and classifying
potato leaf diseases. They utilized the Plant-
Village and Mendeley datasets containing
2,580 images and were able to achieve an
accuracy of 97% using VGG16 that
outperformed the others (Nishad et al., 2022).
(Sanjeev et al., 2021) reported a 96.5%
accuracy using the Feed Forward Neural
Network (FFNN) model on the Plant-Village
dataset comprising a total of 2,152 images.
Furthermore, Khalifa et al. (2021), proposed
a CNN hierarchical architecture comprising
14 layers among which are two principal
convolutional layers, tasked with extracting
features, as well as two fully connected layers,
for classification. The model underwent
training using a dataset consisting of 1,722
images, and achieved a mean accuracy of
98.00% (Khalifa et al., 2021).

Collectively, prior studies depict high
accuracy under controlled imaging, but most
apply limited preprocessing techniques and
evaluate only individual architectures
separately, leaving open the questions
whether selective image enhancement can
improve CNN performance and how best to
combine the various models. To address this
gap, we integrate an image enhancement
pipeline, including background removal,
contrast adjustment, and morphological
transformations (erosion and opening), with
modern CNNs. We then train identical
architectures on two matched datasets; a
baseline set with background removal only
and an enhanced set with additional contrast
and morphology.

The contributions of our work are threefold,
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e A targeted image-enhancement
pipeline,  background  removal,
contrast adjustment, and

morphological transformations
(erosion/opening), tailored to visible
symptoms of leaf diseases.

e A controlled comparison that trains
identical CNN backbones on original
versus enhanced images to quantify
the effect of preprocessing.

e A lightweight parallel hybrid that
fuses the two best-performing CNNs
to improve accuracy and stability.

On a three-class potato leaf dataset (healthy,
early  blight, late blight), targeted
enhancement consistently improved single-
model accuracy, precision, and recall by
2.45% to 4.45%. A parallel hybrid that fuses
the two top-performing CNNs achieved
98.91% accuracy, which is 10.69% higher
than the lowest-performing individual model
(88.22%). Taken together, these results
indicate that principled preprocessing, by
reducing image noise and improving pattern
recognition on potato leaves, mitigates
residual errors in CNN classifiers, and that a
simple two-stream hybrid further improves
reliability ~without heavy architectural
changes.

The remaining sections of this work are
organized as follows. The following Section
describes the materials and methods, while
the third section provides a description of the
experimental setup. Section 4 contains the
discussion and results of the experiment, and
Section 5 concludes the study.

MATERIALS AND METHOD

Dataset

The study used a potato leaf disease dataset
that is publicly available and can be accessed
from Kaggle (Muhammad et al., 2020.;
Rashid et al., 2021). The potato dataset
contains 4072 images with 256x256 pixels
that are divided into three categories: Early
blight (Eab) with 1628 images, Healthy (He)
with 1020 images, and Late blight (Lab) with
1412 images. Figure 1 shows the three image

categories of potato leaves taken in a
controlled environment.

@ ® ©
Figure 1: Potato leaf dataset (a) Early blight (b)
Healthy (c) Late blight

Preprocessing method

We applied four preprocessing techniques to
reduce image noise and highlight disease-
related features: background removal,
contrast enhancement, threshold
segmentation, and morphological
transformation (erosion and morphological
opening), as illustrated in Figure 2.
Background removal eliminates non-leaf
areas, ensuring the model focuses on the leaf
itself and avoids misleading textures. Contrast
enhancement adjusts brightness and contrast,
helping early CNN layers capture meaningful
patterns more effectively. Thresholding
generates a clean leaf mask, preventing
background pixels from being included after
segmentation. Erosion, the most effective
method, removes small bright specks and
trims noisy edges, sharpening lesion
boundaries and enhancing feature clarity.
Opening (erosion followed by dilation)
breaks thin objects and smooths outlines but
can also remove fine lesion details, which
accounts for its slightly lower accuracy
compared to erosion alone.

Backgrounds were removed using Python’s
“rembg” function, which applies a neural
network model trained on a large dataset to
remove  backgrounds, thus reducing
distracting noise. Next, we normalize
exposure with contrast adjustment using
equations (1) - (3). For each image, we
compute its mean brightness B, set B,.f t0
the maximum per-image mean brightness on
the training dataset, and rescale pixel
intensities by the maximal intensity factor

(IF), determined as IF =% with values
clipped to [0, 255] (Demonstrated in Figure
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3(a) and (b)). We then threshold the contrast-
adjusted image to isolate the leaf foreground,
operating per channel and combining masks
as in equations (4) - (6); this step further
suppresses  background and  makes
foreground patterns more prominent.

(@) (b)

Figure 2: The pre-processing procedure used (a) Original image (b) Background removal (c)

Brightness enhanced (d)
transformation-open.

Morphological

Finally, we apply morphological
modification techniques to the thresholded
image; the morphological-erosion and
morphological-opening (erosion followed by
dilation) to reduce small artifacts and smooth
boundaries (as shown in Figure 3(c), (d), and
(€)).

We evaluate two morphology variants;
erosion-only and morphological opening, and
the full preprocessing workflow is outlined in
algorithm 1. It is worth noting that standalone
dilation was not applied in our study.
Although dilation can link bright regions or
enhance features, in our setting it increased
regional brightness and reduced efficiency,
SO we restrict its use to the dilation step
within opening only.

B=—_YW ¥ I(xy) @

transformation-erosion  (e)

(c) (d) (€)

IF = Bref (2)
B

I'x,y) = ©)

clip(IFl(x,y),0,255)

Mc(x' Y) (4)
_ {1, IL(x,y) > T,

0, otherwise
€ {R,G,B}

M(x,y) =Mg(x,y)V Mg (x,y)V (5)
Mg(x,y)

Is(x,y) =1'(x,y)-M(x,y) (6)

Morphological
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Whereby; I(x,y) € [0,255] is the input
intensity; W x H is image size in pixel and
clip(v,0,255) = min(max(v, 0),255). The
thresholds T, can either be fixed or computed
by Otsu. In our study, we adopt fixed global
thresholds T, , T;, and Ty selected on the
training set.

1. Equation (1) computes the average
brightness of the image as the summation
of all pixel intensities divided by the
number of pixels.

2. Equation (2) defines an image-specific
scaling factor. If the image is darker than
the reference (i.e., B < B,.f ), then IF >
1 and pixels will be brightened; if
brighter, IF <1 and pixels will be
dimmed.

3. Equation (3) rescales each scale by IF
and clips the result to the valid 8-bit range

[0,255], producing the contrast adjusted
image I'.

Equation (4) builds a binary mask per

. channel (R, G, B), marking pixel as

foreground (assigned value 1) where the
contrast-adjusted value exceeds the
channel threshold T, ; otherwise
background (value 0).

Equation (5) combines the three masks

with a logical OR to get a single

foreground mask M.

Equation (6) applies the mask to the
contrast-adjusted image, keeping
foreground pixels (where M = 1) and
zero out background, Yyielding the
segmented image I used for morphology.

Algorithm 1: Image Preprocessing Pipeline (background removal, contrast adjustment,

thresholding, morphology)

Step 1 Insert a 256x256 image.

Using the rembg function, remove the background from the image

Use Equation (2) to calculate the IF as B,.¢/B, whereby B,... is the precomputed
Use Equation (3) to compute contrast adjustment (rescaling by IF and clip to
Separate the enhanced image I’ into red, green, and blue channels to create three

Use Equations (4) to (6), to threshold each channel to build masks, combine the

Combine the eroded channel images from Step 8 to create the eroded three-

Apply dilation to the images from Step 8 with a 2x2 kernel (for the opening

Step 2
Step 3 Use Equation (1), to calculate the image’s mean brightness B
Step 4
training-set reference brightness.
Step 5
[0, 255]) to obtain the enhanced image I'.
Step 6
grayscale images.
Step 7
masks, and apply the combined mask to get the segmented image.
Step 8 Apply erosion on the image created in Step 7 with a 2x2 kernel.
Step 9
channel image.
Step 10
variant).
Step 11

Combine the images from Step 10 to get the dilated three-channel image.

Note: Stop after Step 9 for the erosion-only variant; continue through Step 11 for the
morphological opening variant.
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Figure 3: Comparison of images (a) Brightness
enhanced (b) Threshold segmentation (c)
Morphological-open  (d)  Morphological-
erosion.

Convolution Neural Network

CNN plays a vital role in the field of DL and
is widely utilized in the domain of computer
vision. CNNs can detect visual patterns
inside picture pixels with  minimal
preprocessing (Alzubaidi et al.,, 2021;
Kattenborn et al., 2021; Tian et al., 2020). As
a result, they have been widely employed in
research endeavors pertaining to image-
based detection.

In this study, we selected InceptionV3,
Xception, DenseNet201, and ResNet152V2
to provide a diverse evaluation of CNN
architectures. InceptionVV3 was chosen for its
ability to capture multi-scale features through
parallel convolutional filters, making it
suitable for detecting complex disease
patterns (He et al., 2016). Xception employs
depthwise separable convolutions, offering
computational efficiency while maintaining
strong feature extraction (Chollet, 2016).
DenseNet201 leverages dense connectivity to
promote feature reuse and mitigate vanishing
gradients, which is advantageous when
working with limited datasets (Huang et al.,
2017). ResNet152V2, with its very deep
residual learning framework, enables robust
representation learning and effectively
handles complex image variations (He et al.,
2015). Together, these models represent
complementary design strategies multi-scale
feature  learning,  efficiency, dense
connectivity, and deep residual learning

providing a
evaluating performance
classification.

The GoogleNet architecture presents a viable
alternative to CNNs with the incorporation of
an inception module, which introduces
supplementary  layers. The GoogleNet
architecture employs a substitution of average
pooling for fully connected layers located at
the topmost portion of the convolutional
network, leading to a notable decrease in the
number of parameters (Szegedy et al., 2016).
The architectural design of GoogleNet was
built with the primary aim of reducing energy
consumption and optimizing memory
utilization. This study additionally examines
InceptionV3, a model that is expected to
supersede both InceptionV1 and InceptionV2
(He et al., 2016). The Xception on the other
hand  exhibited superior  performance
compared to InceptionV3, despite both
models having an equal number of
parameters. This notable difference in
performance was observed specifically on the
largest dataset. The main improvement in this
model involves the substitution of
conventional convolution layers with depth-
wise  separable  convolutions. This
modification entails decomposing the
convolution operation into two distinct
components: depth-wise convolutions and
point-wise convolutions. This methodology
effectively decreases the quantity of
parameters and computations, while also
upholding or enhancing the accuracy of the
model (Chollet, 2016).

Huang et al., proposed the DenseNet-201
model, which is an expanded version of the
DenseNet framework that exhibits dense
connectivity patterns between layers. The
architectural design, consisting of a total of
201 layers, effectively improves the
utilization of features and the flow of
gradients, all while ensuring computational
efficiency (Huang et al, 2017).
Consequently,  this  design  exhibits
exceptional performance in the domain of
picture classification tasks.

ResNet model was proposed by Zhang, et al.
to overcome the vanishing gradient problem

comprehensive basis for
in crop disease
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in deep neural networks. The model
incorporates residual blocks with skip
connections, allowing for the training of
exceptionally deep networks. This approach
has demonstrated notable success in the
realm of image recognition applications (He
etal., 2015).

The CNN design is made up of three types of
layers: convolution layers, pooling layers,
and fully connected layers (FC). In a neural
network, feature extraction is achieved using
convolution and pooling layers, whereas the
subsequent step of mapping these features
into the final output, which is frequently
represented by a softmax function, is
accomplished using an FC layer. The CNN-
based models presented in this study use
input images with dimensions of 150x150
pixels, as shown in Figure 4. Convolutional
techniques are applied to these images before

Pooling

Convolution

[nput

EXPERIMENTAL SETUP

The framework of the proposed method is
shown in Figure 6 with a 256 x 256-pixel input
image. The input images are sent through the
background removal block to keep the
required section before being routed through
the contrast enhancement block. This block
computes the greatest intensity acquired from
all images and uses it as the lowest intensity
for all images. These RGB (red-green-blue)
images are divided into three grayscale
channels, and the threshold approach is used
to separate the foreground and background. It
IS necessary to separate images into grayscale
because =~ morphological  transformation
procedures are applied to grayscale images.
At this stage, morphological erosion is used
first, followed by dilation as illustrated in
Algorithm. The process of performing the

Pooling
ol W J Eab

H He

L J \ Lab

\

Softmax

FC

Figure 5:Convolution neural network architecture.

Input with size
of 150x150 pixels

DenseNet-201

Resnet152V2

Parallel connection FC

Figure 4:Proposed Hybrid convolution neural network architecture.

they are connected to an FC layer of size 128.
On the other hand, Figure 5 shows a hybrid
CNN model with two models stacked in
parallel and sharing the input data as well as
output, which is connected with FC layers
with 128 neurons and a softmax layer as an
output.

erosion followed by dilation is known as
Morphological-open.  Later, the three
grayscale image channels are combined to
generate the RGB images that are sent into the
CNN-based models. For quicker processing,
the model’s input block converts images to
150 x 150 pixels. Four sets of data are used to
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train models wusing the InceptionV3,
Xception, DenseNet201, and ResNet152V2
for good comparison: original images,
contrast enhanced images, morphological-
erosion, and morphological-open. After
testing the CNN-based models on four
different sets of data, the images trained on
morphological erosion outperformed the
others by up to 4.45%. For further
improvement and comparing with the state-
of-the-art methods, the two models that

Separate the image into red,
green, and blue channels to
obtain grayscale images.

[nput image of size
(256x256 pixels)

Evaluation Parameters

To evaluate the classification models, we use
four parameters listed in equations 7-10,
namely accuracy (Acc), precision (Pre), recall
(Rec), and F1-score (F1). Accuracy measures
the ratio of correctly classified images to the
total number of images. Precision indicates
the proportion of images predicted as a
specific disease that are truly correct, meaning
a high precision corresponds to fewer false

Apply threshold
segmentation technique

_’. )
to each band of image.

l Extract the brightness from
Remove the images and use the highest Apply morphological
background brightness to compute the transformation methods.
contrast. l
Training and validation of D divided i
—»  the CNN based models. <— ?g‘f]‘s;’_tls‘? ed mto — Merge the three
With size 150x150 pixels S0 Tammg_, channels to obtain the
validation, and testing RGB image.
No v
// s the model \K wr.
T generalizing? _ Testing
IYes
Classification output

Figure 6: Framework of the proposed method.

performed better were merged in parallel
using the same input and attained an overall
accuracy of 98.91% and 0.98 of F1 score. The
Adam optimizer was used for the training,
with a 32-fixed batch size, a learning rate of
0.001, and a dropout rate of 0.15. All models
were trained on a system powered by an Intel
Core i5-7200u CPU (2.50 GHz, 2.71 GHz)
and 16 GB of RAM. Furthermore, multiple
augmentation techniques such as vertical flip,
zoom range 0.5, and rotation for 90 degrees
were applied during training for good
generalization.

positives. Recall represents the proportion of
diseased images that are correctly identified,
where a higher recall reduces false negatives.
Finally, the F1-score combines precision and
recall into a single measure, making it
especially valuable when class distributions
are imbalanced, as it reflects the model’s
ability to minimize both false positives and
false negatives.

Tne + Tpo (7)

A.. =
“ TNe+TPo+FPo+FNe
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p. = TPO (8)
e TPo + FPo
R.. = TPO (9)
ec —m
TPO + FNe
Fi = 2((Pre-Rec)/(Pre + Rec)) (10)

The term "True Negative (Tne)" refers to the
accurate prediction of the negative class by
the model. A True Positive (Tpo) refers to a
situation where the model accurately predicts
the positive class. A false negative (Fne) refers
to an incorrect prediction made by the model
regarding the negative class. A false positive
(Fpo) refers to a situation where a model
incorrectly predicts a positive class.

- |nceptionV3
0.90 1 0.7 Xception
—— DenseNet201
06 - ~— ResNet152V2
& 085
® @
3 3
< 080 s
& g
g g
Z o1 <04
’ = InceptionV3
Xception
070 - —— DenseNet201 i3
= ResNet152V2
0 5 10 15 20 25 0 5 10 15 20 25 30
Epochs Epochs
(a) (b)

Figure 7:Models trained on original images which are InceptionV3, Xception, DenseNet201, and

ResNet152V2. (a) Accuracy (b) Loss.

0.95 -
0.90 -
)
© 0.85 1
=]
g
e
v 0.80 1
o
g
S
A5 = InceptionV3-cen
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0.70 1 = DenseNet201-cen
= ResNet152V2-cen
0 5 10 15 20 5 30
Epochs
(a)

0.7 1 - |nceptionV3-cen
Xception-cen
] - DenseNet201-cen
%1 ) — ResNet152V2-cen
m 05 ;
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W
@
a); 044
I
0.3 1
0.2 1
0 5 10 15 20 5 30
Epochs
(b)

Figure 8:Models trained on contrast-enhanced images which are InceptionV3-cen, Xception-cen,
DenseNet201-cen, and ResNet152V2-cen. (a) Accuracy (b) Loss.

EXPERIMENTAL AND
DISCUSSION

This section presents the experimental results
of four sets of data, namely original images
and three types of enhanced images: contrast

enhanced, morphological erosion, and

RESULTS

morphological-open.  Additionally, this
section discusses the comparison between the
suggested method and current methods.
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Experimental results

Figure 7 (a) and (b) show the accuracy and
loss of models trained on the original images,
which  are  InceptionV3,  Xception,
DenseNet201, and ResNet152V2. The
average accuracy rates for the InceptionV3,
Xception, DenseNet201, and ResNet152V2
models were 88.22%, 88.89%, 92.44%, and
90.22%, respectively, with mean losses of
0.35, 0.31, 0.23, and 0.28.

Figure 8 (a) and (b) show the accuracy and
loss performance metrics of the models
trained on contrast-enhanced images. These
models are known as InceptionV3-cen,
Xception-cen, DenseNet201-cen,  and
ResNet152V2-cen in this study. The average
accuracy rates for the InceptionV3-cen,
Xception-cen,  DenseNet201-cen, and
ResNet152V2-cen models, with mean losses
of 0.33, 0.30, 0.18, and 0.28, were 88.67%,
89.78%, 93.56%, and 90.33%, respectively.
Figure 9 (a) and (b) show the accuracy and
loss metrics of models trained on images

enhanced with morphological erosion. These
models are referred to as InceptionV3-mer,
Xception-mer,  DenseNet201-mer, and
ResNet152V2-mer in this study. With mean
losses of 0.24, 0.23, 0.12, and 0.25, the
average accuracy rates for the InceptionV3-
mer, Xception-mer, DenseNet201-mer, and
ResNet152V2-mer models were 91.11%,
92.45%, 96.89%, and 92.67%, respectively.
Figure 10 (a) and (b) show the accuracy and

loss metrics of models trained on images
enhanced with morphological open. These
models are known as ResNet152V2-mop,
DenseNet201-mop,  Xception-mop, and
InceptionVV3-mop in this study. The average
accuracy rates for the InceptionV3-mop,
Xception-mop,  DenseNet201-mop, and
ResNet152V2-mop models were 89.11%,
90.24%, 93.33%, and 88.89%, respectively,
with mean losses of 0.36, 0.27, 0.21, and 0.34.

0.95 1

0.90 -

0.85 1

0.80 1

Average Accuracy

0.75 1

= InceptionV3-mer
Xception-mer

— DenseNet201-mer

= ResNet152V2-mer

- InceptionV3-mer
Xception-mer

—— DenseNet201-mer

—— ResNet152V2-mer

o o o o o
£ wv o ~ @

Average Loss

o
w

=]
N

= g

o
ot

0 5 10 15 20 25
Epochs

(@)

0 0 5 10 15 20 5 £
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Figure 9:Models trained on images enhanced with morphological erosion methods which are
InceptionV3-mer, Xception-mer, DenseNet201-mer, and ResNet152V2-mer. (a) Accuracy (b)

Loss.
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Figure 10:Models trained on images enhanced with morphological open method which are

InceptionVV3-mop, Xception-mop, DenseNet201
Loss

On the other hand, Table 1 through Table 5
shows the confusion matrices of the models
trained on the four sets of data. Table 1
presents an overview of the InceptionV3,
Xception, DenseNet201, and ResNet152V2
models. The InceptionVV3 model exhibited
poor performance, achieving an accuracy rate
of 88.22%, when compared to the other three
models. In contrast, the DenseNet201 model
demonstrated the highest accuracy rate of
92.44%, surpassing both the Xception and

-mop, and ResNet152V2-mop. (a) Accuracy (b)

ResNet152VV2 models, which achieved
accuracy rates of 88.89% and 90.22%
respectively. Additionally, the Eab class in
InceptionV3 has a poor recall of 0.82, while
the He class has a low precision of 0.76 and
an F1 score of 0.86. The precision, recall, and
Fl-score of the remaining classes vary
between 0.83 and 0.99. In contrast, the
precision, recall, and F1- score of the classes
in the DenseNet201 model exhibit a range of
values ranging from 0.9 to 0.95.

Table 1: Confusion matrix of all models trained on original images.

Class Accuracy | Precision | Recall | F1- Improveme
Eab He Lab (%) score nt (%)
InceptionV3
Eab 123 24 3 0.99 0.82 0.90
He 0 149 1 88.22 0.76 0.99 0.86 -
Lab 1 24 125 0.97 0.83 0.90
Xception

Eab 135 9 6 0.89 0.90 0.89
He 9 133 8 88.89 0.88 0.89 0.88 -
Lab 8 10 132 0.90 0.88 0.89

DenseeNet201
Eab 139 5 6 0.95 0.93 0.94
He 7 138 5 92.44 0.90 0.92 0.91 -
Lab 1 10 139 0.93 0.93 0.93

ResNet152V2
Eab 130 7 13 1.00 0.87 0.93
He 0 130 20 90.22 0.92 0.87 0.89 -
Lab 0 4 146 0.82 0.97 0.89

Table 2 shows the confusion matrix for the
InceptionV3-cen, Xception-cen,
DenseNet201-cen, and ResNet152V2-cen

models. The InceptionVV3-cen model showed
poor performance, with an accuracy rate of
88.67%. In comparison, the DenseNet201-
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cen model demonstrated the highest
accuracy rate of 93.56% when compared to
the Xception-cen and ResNet152V2-cen
models, which achieved accuracy rates of
89.78% and  91.78%,  respectively
Additionally, it is observed that the He class
of the InceptionV3-cen model has a
precision value of 0.78. Similarly, the Lab
class demonstrates a low Fi score of 0.79
and a recall value of 0.87. The precision,
recall, and Fi-score of the other classes vary

between 0.89 and 0.97. In contrast, the
precision, recall, and Fi-score of the classes
of the DenseNet201-cen model exhibit a
range of values spanning from 0.92 to 0.95.
The empirical findings indicate that the
utilization of contrast enhancement pre-
processing techniques resulted in an
enhancement of model performance ranging
from 0.45% for InceptionV3-cen to 1.56%
for ResNet152V2-cen.

Table 2: Confusion matrix of all models trained on contrast enhanced images.

Class Accuracy (%) | Precision | Recall F1- Improveme
Eab He Lab score nt (%)
InceptionV3-cen
Eab 134 15 1 0.96 0.89 0.92
He 1 146 3 88.67 0.78 0.97 0.87 0.45
Lab 5 26 119 0.97 0.79 0.87
Xception-cen
Eab 137 8 5 0.95 0.91 0.93
He 4 136 10 89.78 0.85 0.91 0.88 0.89
Lab 3 16 131 0.90 0.87 0.89
DenseNet201-cen
Eab 141 5 4 0.92 0.94 0.93
He 6 140 4 93.56 0.94 0.93 0.94 1.12
Lab 6 4 140 0.95 0.93 0.94
ResNet152V2-cen
Eab 134 5 11 1.00 0.89 0.94
He 0 132 18 91.78 0.94 0.88 0.91 1.56
Lab 0 3 147 0.84 0.98 0.90

Table 3 shows the confusion matrix
pertaining to the InceptionV3-mer,
Xception-mer,  DenseNet201-mer, and
ResNet152V2-mer models. Among the
three models evaluated, the Xception-mer
model exhibited the lowest accuracy rate of
90.45%. Conversely, the DenseNet201-mer
model demonstrated strong performance,
with an accuracy rate of 94.89%. This
surpassed the accuracy rates of the
ResNet152V2-mer and InceptionV3-mer
models, which achieved accuracy levels of
90.67% and  91.11%  respectively.
Furthermore, it is worth noting that the He
class of InceptionV3-mer exhibits a

precision value of 0.83. On the other hand,
the Lab class showcases a relatively lower
recall value of 0.81 and an F1-score of 0.88.
The precision, recall, and F1-score of the
remaining classes exhibit a range of values
ranging from 0.90 to 0.97. On the other hand,
the DenseNet201-mer model demonstrates
class precision, recall, and F1-score values
ranging from 0.95 to 1.00. The experimental
results indicate that the utilization of
erosion-based pre-processing techniques
resulted in a notable improvement in model
performance, ranging from 2.45% for
ResNet152V2-mer to 4.45% for
InceptionVV3-mer.
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Table 3: Confusion matrix of all models trained on Morphological erosion images

Class Accuracy Precision | Recall | Fl-score Improve
Eab He Lab (%) ment (%)
InceptionV3-mer
Eab 141 6 3 0.96 0.94 0.95
He 2 147 1 91.11 0.83 0.98 0.90 2.89
Lab 4 24 122 0.97 0.81 0.88
Xception-mer
Eab 139 6 5 0.97 0.93 0.93
He 2 142 6 92.45 0.89 0.95 0.89 3.56
Lab 3 12 135 0.92 0.90 0.89
DenseeNet201-mer
Eab 144 2 4 1.00 0.96 0.98
He 0 148 2 96.89 0.95 0.99 0.97 4.45
Lab 0 6 144 0.96 0.96 0.96
ResNet152V2-mer
Eab 143 6 1 0.97 095 0.96
He 2 146 2 92.67 0.85 0.97 0.91 2.45
Lab 3 19 128 0.98 0.85 0.91

The confusion matrix for the models
InceptionV3-mop, Xception-mop,
DenseNet201- mop, and ResNetl52V2-
mop is shown in Table 4. The InceptionV3-
mop model performed poorly, with an
accuracy rate of 89.11%. When compared to
the Xception-mop and ResNet152V2-mop
models, which achieved accuracy rates of
90.24% and 88.89%, respectively, the
DenseNet201-mop model achieved the
highest accuracy rate of 93.33%. In
addition, the He class of the InceptionV3-
mop model has a precision value of 0.80,
indicating a high number of false positives.
Similarly, the Lab class has a poor recall
score of 0.79, indicating that it has a high
number of false negatives. Additionally, the
Lab and He classes both achieved an F1-
score of 0.88. The other classes' precision,
recall, and F1-score range from 0.89 to 1.00.
The precision, recall, and F1-score of the
classes in the DenseNet201-mop model, on
the other hand, range from 0.88 to 0.99.

The experimental results indicate that the
performance of models trained with
InceptionV3-mop,  Xception-mop, and

DenseNet201-mop improves by 0.89%,
1.35%, and 0.89%, respectively, when
compared to models trained with original
images. Surprisingly, the performance of
ResNet152V2-mop dropped by 1.33% when
compared to ResNet152V2. In addition, it
was observed that the performance of these
models was lower by a margin of 2% to
3.56% when compared to models trained
using morphological erosion.
Morphological erosion method
outperformed opening method because its
sharpened lesion boundaries and removed
small background noise without excessively
altering the leaf structure. This allowed the
model to focus on more discriminative
disease patterns, leading to better feature
learning. In contrast, opening (erosion
followed by dilation) tended to smooth
edges and eliminate fine lesion details,
which reduced the availability of critical
texture information for classification. As a
result, erosion preserved key features while
minimizing noise, yielding higher accuracy
and lower loss.

Table 4: Confusion matrix of all models trained on Morphological-open images.

‘ Class

Eab

He

Lab

Accuracy
(%)

Precision

Recall

F1-
score

Improve
ment (%)
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InceptionV3-mop

Eab 134 16 0 89.11
He 2 148
Lab 10 21 119

o

0.92 0.89 0.91
0.80 0.99 0.88 0.89
1.00 0.79 0.88

Xception-mop

Eab 138 8 4 90.24
He 4 139 7
Lab 7 14 129

0.93 0.92 0.92
0.86 0.93 0.89 1.35
0.92 0.86 0.89

DenseeNet201-mop

Eab 138 4 8 93.33
He 0 138 12
Lab 1 5 144

0.99 0.92 0.96
0.94 0.92 0.93 0.89
0.88 0.96 0.92

ResNet152V2-mop

Eab 120 18 12 | 88.89
He 2 139 9
Lab 1 8 141

0.98 0.80 0.88
0.84 0.93 0.88 -1.33
0.87 0.94 0.90

To compare the proposed approach to
current approaches, a hybrid CNN model
was created by combining the two models
that performed well which are
DenseNet201-mer and ResNet152V2-mer.
These models were joined in parallel and

100
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shared the same input and output. The
hybrid CNN model was trained for 30
epochs and achieved an average accuracy of
98.91%, with a loss of 0.101 as shown in
Figure 11 (a) and (b).
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Figure 11: Accuracy and loss of the models trained on improved images (a) Hybrid CNN

accuracy, (b) Hybrid CNN loss.

Table 5 shows the results of the proposed
method; the model achieved an overall
accuracy of 98.91%, representing a 10.67
improvement over InceptionVa3.
Furthermore, the class precision ranges from
0.98 to 1, the recall is 0.99, and the F1-score
ranges from 0.98 to 0.99. It is worth noting
that the Eab class outperformed the others,
with precision score of 1 and recall and F1-

scores of 0.99. Table 6 presents a comparative
analysis of the performance of the proposed
model and the existing state-of-the-art
methodologies found in the literature for the
purpose of classifying potato leaves. The
table's data shows that the models provided in
this study perform better than any previously
recommended approaches. The proposed
models achieved a precision level of 98.91%.

Table 5: Confusion matrix of the proposed hybrid CNN model
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Class Accuracy | Precisio | Recall F1-score | Improvement
Eab He Lab (%) n (%)

Eab 148 1 1 1.00 0.99 0.99

He 0 149 1 98.91 0.98 0.99 0.98 10.69

Lab 0 2 148 0.99 0.99 0.99

Table 6: Comparative analysis of the performance of the proposed model and other models

Method Applied Technique (s) | Plant disease | Classification
(Classes) Accuracy

Proposed Hybrid-CNN 98.91
Khobragade et al., (2022) CNN 98.07
Khalifa et al., (2021) CNN 98.00
Igbal & Talukder, (2020) RF 97
Nishad et al., (2022) CNN Potato (3) 97
Sanjeev et al, (2021) FFNN 96.5
Singh A and Kaur H, (2021) Multiclass SVM 95.99
Islam et al, (2017) SVM 95.00
Hou et al., (2021) SVM Potato (5) 97.4

CONCLUSION

This study presented a method for detecting
disease-induced patterns on potato leaves
using efficient integration of CNN-based
image processing and  pre-processing
techniques. By applying enhancement
procedures such as background removal,
contrast improvement, and morphological
transformations (erosion and morphological
open), the visibility of disease patterns on
potato leaves was improved. The models
trained on these enhanced images,
particularly those processed with
morphological transformation-erosion
techniques, outperformed those trained on
original images, depicting a 2.45% to 4.45%
improvement in accuracy and F1-score. To
further enhance the performance, the two best
models, Densenet201-mer and Resnet152-
mer, were combined in parallel to create a
hybrid CNN model, which achieved an
accuracy of 98.91% and an average F1-score
of 0.98, representing a 10.69% improvement.
This approach demonstrates the potential to
transform disease detection in potato crops,

reducing yield losses and minimizing the need
for chemical interventions. The main
limitation of this study lies in the sensitivity
of the detection technique to background
noise. When applied to images with complex
or cluttered backgrounds, the method often
misidentifies  features,  reducing  its
effectiveness under field conditions where
such interference is common. For real-time
image processing, background removal
becomes necessary to improve detection, but
this step introduces additional delays. Future
work could explore the impact of these
morphological transformations on a wider
range of crop types to broaden the
applicability of this approach.
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