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Abstract

saturated zone in the shallow permeable soils. It is becoming clear that the

outflow from this saturated zone is not linear proportional to storage as is
commonly assumed in many algorithms. The objectives of this study therefore, are first
to explore the extent to which the assumption of linearity in storage-outflow
relationships is valid and secondly to introduce an alternative approach to baseflow
separation algorithms for estimating direct runoff time series. Numerical analysis of
streamflow recessions from the semi-arid catchments of the Great Ruaha basin in
Tanzania reveals a non-linear relationship between baseflow and storage. This
relationship is used to derive an alternative approach to estimate direct runoff. The
method involves fitting an exponential reservoir model using an iteration algorithm. The
study goes further to evaluate the parameter sensitivity using the methodology of
Generalized Likelihood Uncertainty Estimation (GLUE). Finally this study has found
that a major difficulty in storage-outflow modelling of streamflow recessions,
irrespective of the linearity of the model is the variation of model parameters from one

Discharge in many rivers is often fed by baseflow provided by drainage of the

event to the next event.

1. INTRODUCTION

Baseflow separation from streamflow
hydrographs has long been a topic of interest
in hydrology (Hall, 1968; Tallaksen, 1995)
since the baseflow recession curve itself
contains valuable information about the
aquifer properties. Baseflow recession
analyses are routinely used in low flow
forecasting, water supply allocation,
hydroelectric powerplant designs and waste
dilution schemes (Tallaksen, 1995). Also
baseflow separation from quick storm
response is required for numerous widely
used hydrological models and other water
resource applications (Vogel and Kroll,
1996).

During periods when catchment inputs,
evapotranspiration and groundwater
extractions are negligible, the streamflow
recession curve will be an expression of the
storage-outflow relation for the catchment.
Knowledge of this relation can be useful for
applications including forecasting and
prediction of baseflow (Bako and Owoade,
1988; Vogel and Kroll, 1992). Previous
recession analyses for baseflow separation
have focused mainly on catchments fed by
substantial aquifers (Clausen, 1992).
However, in many catchments, baseflow
may be provided by drainage of a saturated

.zone rather than by deeper groundwater

(Anderson and Burt, 1980). Beven and
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Kirkby (1979) developed a conceptual
model (TOPMODEL) for drainage of the
saturated zone in a shallow soil. Ambroise et
al. (1996) extended this model and tested the
predicted recession behaviour against the
master recession curve for a 36 ha
catchment with mixed grassland and forest
cover. Apart from these studies, little
empirical attention appears to have been
paid to the form of the storage-outflow
relation for a saturated throughflow system
in field catchments.

Storage-outflow miodelling of streamflow
recessions allows the determination of
characteristics for the groundwater reservoir,
a prerequisite for the separation of baseflow
from total flow and the estimation of
groundwater ~ storage and  recharge.
Following tradition, and because of the
easier mathematical formulation, conceptual
models for storage-outflow relationships are
still predominantly linear. For storage-
outflow modelling of streamflow recessions
the algorithm of the single linear reservoir is
commonly used in engineering practice and
research studies for baseflow separation
(Nathan and McMahon, 1990; Wood et al.,
1992; Schwarze ef al., 1997). However, it is
unlikely that natural storage effects could be
truly linear (Prasad, 1967; Wittenberg, 1994;
Moore, 1997; Wittenberg, 1999). The large
number of existing techniques and the high
level of subjectivity in separating baseflow

contribution from total streamflow {
Tallaksen, 1995) indicates that the problem
is not fully understood. This study therefore,
has two main objectives. The first is to
explore the extent to which the assumption
of linearity is valid with application to semi-
arid catchments. The second objective was
to introduce an alternative method to the
baseflow  separation  algorithms  for
estimating direct runotf time series.

2. METHOLOGY

2.1. Catchments and Data

The data used in this study were rainfall and
streamflow records available on a daily basis
for 4 catchments of the Usangu plains of the
Great Ruaha basin in Tanzania. The details
of the selected catchments are given in
Table 1. Figure 1, shows the map of the
location of the catchment area within
Tanzania.

According to DANIDA (1995), most of the
Usangu plains are semi-arid dominated by
erratic and unreliable rainfall varying
between 400-600 mm per year. The annual
potential  evaporation  varies  from
approximately 1400 mm to 1850 mm. Most
of the plains are flat and the average
elevation only varies from 1000 m to about
1150 m.

Table 1: Data for the selected catchments in the Usangu plains (DANIDA, 1995)

Station code ~ Catchment Hydrometric station Location Area

name Latitude Longitude (km?)
IKATA Chimala Chitekelo (MBEYA) 8°55’S  33°S8’E 167
IKARA Great Ruaha Salimwani (MBEYA) 8°54’S  37°07E 795
IKA9 Kimani Gt. N. Road (MBEYA) 8°51°S  34°11’E 448
KA11A Mbarali Igawa (MBEYA) 8°47'S  34°22°E 1600
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Figure 1. Location of hydrometric stations and mean annual rainfall (dotted lines)
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Since the baseflow in this study is assumed
to be provided by drainage of the saturated
zone in the shallow permeable soil, all
catchments with ephemeral streams were
excluded in the analysis, also to limit the
uncertainty introduced by lumped handling
of rainfall, the catchment size was restricted
to 1600 km?. For this reason, four samples
of catchment were selected as representative
of the statistical population of catchments in
the region. The selected catchment consists
of main rivers upstream the irrigation
schemes in Usangu plains. The vast majority
of the consumption water uses (both natural
and due to human activities) is taking place
in this area. The main water demand in the
Usangu plains is due to abstraction of water
for irrigation purposes. With the continuous
in-migration to the area and the extension of
the paddy irrigation schemes further
increase in the water demand may be
expected in the future.

2.2 Data Analysis

2.2.1 Storage-Outflow Modelling of

Streamflow Recession
Two conceptual storage-outflow models
with single reservoirs were considered.
These were the linear reservoir and the non-
linear (exponential) reservoir models.
2.2.1.1 Linear Reservoir Model
The continuity equation for a reservoir was
given by Singh (1988) as:

ds
I-Q=— 1)
Q 7 (

where I is the rate of inflow, Q is the rate of
outflow, and S 1is the storage. These
quantities are all functions of time.

Using a simple linear relationship between
discharge and storage:

S=kQ @)
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where k is the storage parameter.

The continuity equation for a linear

groundwater reservoir without inflow,
vields:

ds
o -0 3

since S = KQ, equation (3) becomes,

K—CiQ—:

— 4
i “@

Integration of equation (4) in the limits t =0
and t, with Q, and Q,, respectively yields:

'iZ—Q¥=——1—t_[dt
. QK

which in turn yields:

(5)

log(Q) =- (/k) t +1log(Qy)  (6)

From Equation (6) a plot of log(Q,) against
time (t) yields a straight line with a slope of
17k

Ever since Maillet (1905), this linear
function has been widely used to describe
the baseflow recession, where Q; is the
discharge at time t, Q, the initial discharge,
and k the recession constant which can be
considered to represent average responsc
time in storage. This linear function implies
that the groundwater aquifer behaves like a
single linear reservoir with storage linearly
proportional to outflow, namely S = kQ
(Wittenberg and Sivapalan, 1999).

It is, however, evident that the parameter k
fitted to different discharge ranges of the
recession curves in actual rivers does not
remain constant but increases systematically
with decrease of streamflow (Wittenberg,
1994; Moore, 1997), which is a strong
indication of nonlinearity. The convenient
assumption that the baseflow may be the
outflow from two or more, parallel linear
reservoirs, representing components of
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different response times is often made
(Moore, 1997), and does result in better fits
to the observed recession curves. However,
this is perhaps only because there are more
parameters to be calibrated, giving more
degrecs of freedom for curve fitting. In most
catchments it is unlikely that the dynamic
groundwater aquifer can be divided so
neatly into such independent storage zones.
It is more likely that it consists of a spatially
variable system of hydraulically
communicating pore or fissure systems.
Thus, the use of single but non-linear
reservoir is considered to be more physically
realistic. Non-linear reservoir algorithms
using power law model have been proposed
and implemented in a large number of
catchments around the world (Wittenberg,
1994; Wittenberg, 1999; Chapman, 1997,
Brutsaert and Lopez, 1998). In the present
study, to allow for non-linearity the linear
storage-outflow relationship is generalised
by an exponential reservoir model (Beven ef
al., 1995).

2.2.1.2. Exponential Reservoir Model

The exponential storage-outflow relation
was originally proposed as part of the
TOPMODEL concept by Beven and Kirkby
{1979), and is based on assumptions of
quasi-steady state saturated throughflow in a
soil in which Thydraulic conductivity
decreases exponentially with depth. For the
purpose of this study, the exponeniial
reservoir model is generalized as:

0, = Qoe—Z/m (7)
where Qy is the outflow from the saturated
zone considered as baseflow, Q, is the initial
discharge, z is the local water table depth
and m is a model parameter. The derivation
of Equation (7) can be found in Beven and
Kirkby (1979); Beven et al,. (1995) and
Beven (2000).

A revised formulation of the TOPMODEL
stores has been presented by Beven et al.
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(1995) and it shows that if a linear

shin between local storage deficit s

uuLAlJ CLYYOULLL 1UVar swvig QCLICEL

and depth to water table z holds, Equation
(7) can be written as:

ralatinn
1viaiitiii

~s/m
Qb = Qoe . (8)
Solution of Equation (8) for a pure recession
in which inputs are assumed to be zero
shows that discharge has an inverse or first
order hyperbolic relationship to timc as:

1 1 {
——= ©
Qb Qa m

2.2.2 Parameter Estimation and

Baseflow Separation

If Equation (9) is an appropriate relationship
to represent the subsurface drainage of a
given catchment a plot of 1/Qy against time
should plot as straight line with slopc 1/m.
The catchment average storage deficit
before each time step is updated by
subtracting the unsaturated zone recharge
and adding the baseflow calculated for
previous time step, thus:

St

S. =8 +Q,e %) ~CR, (10)

Where R, is the observed rainfall at time t
and c is a parameter to be calibrated.

If an initial discharge, Q ¢, is known and
assumed to be only the result of drainage
from the saturated zone, Equation (8) can be
inverted to give a value for S at time t = 0

]

The Equation (10) to (11) therefore, form
the basis for separating the baseflow from
the total streamflow during storm events.
Then given the time series of streamflow

(11)
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and rainfall, the time series of direct runoff
(storm runoff) Qqcan be calculated as:

O, =8 - QOQ{EJ (12)

where Q, is the total observed streamflow at
time t.

Therefore in this approach, three parameters
were considered (m, Q, and ¢) for estimating

baseflow wusing an iterative algorithm
method. These parameters may be
considered to be bulk “physical”
characteristics at the catchment scale.

Parameter ¢ represent the proportion of
rainfall which percolates as recharge to the
groundwater; parameter m has been
suggested by Beven et al, (1995) as a
scaling depth of the effective catchment soil
profile; parameter Q, is a discharge when
recession of streamflow commences. The
model performances were evaluated from
the graphical comparison between the
recession curves of observed Q, and the
estimated Q,. And Nash-Sutcliffe efficiency
which is statistically known as coefficient of
determination indicating proportion of the
variance in the data explained by the model
was used to assess the goodness of fit and is

defined by Nash and Sutcliffe (1970) as:
— oi= T(Q - Q)
002 = Z(Qo" Qm)2 (13)

where Q, is the observed recession flow; Q
is the simulated recession flow; Q is the
mean observed recession flow; c,? is the
variance of the observed recession flow data
calculated over all time steps used in fitting
the model and o2 is the variance of the
differences between observed and simulated
recession flow at each time step. As the
model fit improves the value of R? will
approach 1. If the model is no better than
fitting the mean of the observed recession
flow (c.>=0,?), the value of R* will be zero
or less.

2
oe

R*=1-
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The approach of Generalised Likelihood
Uncertainty Estimation (GLUE)
methodology as proposed by Beven (2000)
was used to assess the parameter sensitivity.
The evaluation procedure was based on the
following major steps:

1 Determining a feasible parameter
ranges from initial analysis of
recession curves and calibration of
exponential reservoir model;

2 Using a Monte Carlo Simulation
method to choose random parameter
values from uniform distributions
spanning specified ranges of each

parameter;

3 Using a likelihood value (Nash-
Sutcliffe efficiency) to divide
acceptable simulations (value>0.5)
from unacceptable  simulations
(value <0.5);

4 Normalizing likelihood values for
the parameter sets that yield

acceptable simulations such that the
sum of the normalized likelihood
values equals 1; and

5 Using the same generated parameter
sets and associated likelihood value
and model outputs to assess
parameter sensitivity.

In the GLUE procedure a prior likelihood
estimate was updated with a new (posterior)
likelihood measure calculated for the
prediction of a new set of observation. The
Bayes equation was used to find a
reasonable combined likelihood measure.
The type of combination using Bayes
equation may be expressed in the form:

Lo (@_1 )L(Ql ‘Y—)

= L (14)
¢

Where L, (@1) is the prior likelihood of the

i™ parameter set; L(@JY_) is the likelihood

calculated for the current evaluation given

the set of observations Y ; L, (@ilX) is the
posterior likelihood and C is a scaling

L,@,|Y
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constant to ensure that the cumulative
posterior likelihood is unity.

3.  RESULTS AND DISCUSSIONS
Two inferences can be drawn from the
graphical interpretation of streamflow
recession curves. First, if the recessions
were consistent with a linear reservoir
model, they would plot as straight lines on a
semi-log graph. As seen in Fig. 2, the plot of
log(Q) against time shows that, the
recessions are clearly non-linear. The linear
reservoir model is generally recognised in
this study as being valid over only a limited

range of recession period, this indicates that,
response (retention) time will not be a
constant over longer ranges and computed
baseflow will not reflect reality. Secondly, if
the recessions were consistent with the
exponential reservoir model, they would plot
as straight lines on a plot of 1/Q against
time. Figure. 3, shows that the recessions are
roughly consistent with the exponential
(non-linear) reservoir model. However, the
variation in shapes of some recession
segments indicates either that the catchment
behaves like a multi-reservoir system, or
that variations in recharge exert a major
influence on streamflow recessions.
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Figure 3. Recession flow seements for the non-linear (exponential) resevoir model

The analysis of streamflow recession curves
obtained from time series of daily discharges
achieved close fit to exponential reservoir
model. However, there is high variation in
values of parameters from one event to the
next, as evidenced by average deviation
from the recession curves, expressed in
terms of the coefficient of variation
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(standard deviation divided by the mean,
corresponding to the least squares criterion)
for each parameter (see Table 2). It can be
hypothesized that this is due to spatial
variations in groundwater storage, occurring
as a result of spatial variations in rainfall and
subsequent recharge.
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Year
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980

mean

std dev.

Ccv

Year
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980

Uhandisi Journal Vol 24 No. 1 August 2001

Chimala catchment

m
71.86
50.72
84.81
60.87
69.91
77.22
67.19
41.72
82.12
53.34
68.07
58.79
50.72
59.47
58.13
40.74
71.86
72.87
52.79
62.80
12.68

0.20

Qo
10.00
10.00
10.00

6.00
11.00
11.00

8.00

3.50
10.00

4.50

2.00

6.50

6.50

6.50

6.50

6.50

6.50
10.00

4.50

7.34

2.67

0.36

Kimani catchment

m
31.62
35.71
35.06
25.71
29.22
32.14
45.92
37.09
26.42
33.25
26.42
34.44
32.14
30.13
31.11
30.13
35.06
33.83
27.55

Qo
5.00
5.00
3.00
3.00
3.00
3.00
6.00
1.50
5.50
3.00
3.00
3.00
3.50
3.00
4.00
2.50
4.00
4.00
2.00

0.30
0.45
0.50
0.30
0.40
0.30
0.30
0.35
0.30
0.60
0.40
0.50
0.50
0.40
0.40
0.30
0.30
0.40
0.40
0.39
0.09
0.23

0.35
0.35
0.18
0.18
0.18
0.18
0.25
0.20
0.20
0.40
0.20
0.30
0.20
0.20
0.20
0.18
0.20
0.30
0.25

61

R2
0.95
0.97
0.99
0.93
0.93
0.8
0.98
0.98
0.97
0.97
0.92
0.97
0.97
0.95
0.96
0.98
0.95
0.98
0.96
0.96
0.03
0.03

RZ
0.99
1.00
0.99
1.00
1.00
1.00
0.99
0.79
0.99
0.97
0.98
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99

G-Ruaha catchment

m
271.70
362.26
543.40

1086.79
987.99

67.92
60.38
43.47
54.34
ol
57.20
54.34
50.72
59.47
58.13
40.74
47.25
35.06
43.47
209.28
321.79
1.54

Qo
10.00
9.00
11.00
11.00
11.00
6.00
7.50
6.00
10.00
6.00
6.00
6.00
6.50
6.50
6.50
6.50
7.50
7.50
5.00
7.66
2.01
0.26

Mbarali catchment

m
180.00
135.00
135.00
60.00
45.00
60.00
54.00
41.54
60.00
54.00
54.00
67.50
54.00
60.00
54.00
2571
41.54
41.54
41.54

Qo
6.00
6.00
6.00
3.00
2.50
2.50
3.00
2.50
3.00
3.00
3.00
3.00
1.50
1.50
2.50
2.50
3.00
2.50
2.50

0.80
0.80
0.75
0.20
0.30
0.30
0.28
0.30
0.28
0.40
0.40
0.40
0.50
0.40
0.40
0.30
0.30
0.35
0.35
0.41
0.18
0.43

0.60
0.32
0.36
0.30
0.30
0.28
0.30
0.30
0.30
0.25
0.30
0.25
0.35
0.18
0.30
0.30
0.25
0.30
0.30

RZ
0.55
0.97
0.99
0.96
0.96
0.73
0.98
0.99
0.97
0.97
0.98
0.98
0.99
0.99
0.96
0.99
0.98
0.86
0.95
093
0.11
0.12

R2
0.96
1.00
0.99
0.95
0.98
0.99
0.75
0.97
0.98
0.98
0.98
0.97
0.98
0.97
0.98
0.92
0.93
0.91
0.91
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mean 32.26 3.53 0.24 0.98 66.55 3.13 0.31 0.95
std dev. 4.71 1.1% 0.07 0.05 39.32 1.35 0.08 0.06
Cv 0.15 0.33 0.29 0.05 0.59 043 0.26 0.06

independently from uniform distributions
An impression of the parameter sensitivity across the feasible parameter range. A
can be gained from Figure 4, which depicts straight line on each plot would represent
the cumulative distributions for each the prior distributions, The strongest
parameter. Lacking any prior information departures from the prior distributions are
about the covariation of the individual shown by parameter ¢ indicating that is
parameters, each was sampled more sensitive than other two parameters.

t: - -Sensitivity

Prior distributions |

Cumulative Distribution
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Value of Parameterc

f— - - -Seﬁértiu‘ty Prior distributions
] = =
s 0.9 A F
£ 0.8 A
2 0.7 - =
2 06 -
3 051
% 04 -
s 0.3 A =3
E 02 -
© 01
0 o T T T
45 50 55 60 65
Value of parameter-m
- - -Sensitivity ———— Prior distributions
1
c 0.9+
S 0.8 4
5 -
.2 0.6 4
3 0.5
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0.2 4
S o4l Z
0 - T . T : T T
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Figure 4. Parameter sensitivity analysis
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Within the GLUE framework, the parameter
sensitivity analysis approach used in this
study is essentially a nonparametric method
in that it makes no prior assumptions about
the variation or covariation of different
parameter values, but only evaluates sets of
parameter values in terms of their
performance. The special characteristic of
Bayes  equation within the GLUE
framework, is its multiplicative operation, if
any evaluation results in a zero likelihood,
the posterior likelihood will be zero

regardless of how well the model has
performed previously. This may be
considered as an important way of rejecting
non-behavioural model parameters, it may
cause a re-evaluation of the data for that
period. As an example, the synthesized
baseflow hydrographs using an exponential
reservoir model are shown in Fig. 5. This

figure depicts major components of
hydrograph: Direct (storm) runoff and
Baseflow (groundwater runoff).

Chimala catchment at 1KA7A
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Figure 5(a). Total observed streamflow (Qt) and estimated baseflow (Qb) for 1980 period.
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Figure 5(b). Total observed streamflow (Qt) and estimated baseflow (Qb) for 1980 period.

4. CONCLUSIONS

The main aim of this study was to explore
the extent to which the assumption of
linearity in storage-outflow relationships is
valid and to introduce an alternative method
to the baseflow separation algorithms for
estimating direct runoff time series.
Diagnostic plots revealed that the recessions
were non-linear. Though the linear reservoir
can be fitted satisfactorily to shorter
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recessions, the classical assumption of the
linear reservoir is still an unquestioned
component in otherwise highly developed
models and should be reviewed. The non-
linearity of the storage-outflow relationships
found in this study is used to introduce an
alternative approach to the baseflow
separation algorithms. The study has gone
further to examine parameter sensitivity for
the non- linear (exponential) reservoir
model. Finally the study has found that a
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major  difficulty in  storage-outflow
modelling of streamflow recessions,
irrespective of linearity of the model is the
variation of model parameters from one
event to the next.
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