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ABSTRACT

A new method on the determination of wind forces by
experimental means in a wind tunnel is discussed. The
method reported herein is based on the identification
methodology of model parameters under time response
(i.e. time domain identification).

As a test model, a thin plate of cypress woed, elastically
suspended in three degrees of freedom to represent the
idealized form of a classical airfoil, for which theoretical
wind load parameters exist, has been employed. Wind
load parameters, experimentally obtained on the test
model under the new method, are compared with the
theoretical values of classical airfoils.

Advantages of the new method against the conventional
methods are discussed.

Key words:

Flutter = elastic vibrations due to
wind loads

Flutter instability = magnified elastic

vibrations signifying the critical wind speed

System parameters = properties of a structure in
natural modes

Wind Load Parameters = properties of a structure
signifying the influence of wind load

Flat plate = idealized model with
structural behaviour as a streamlined body

Time domain = responses on basis of time
interval
Frequency domain
frequency interval

= responses on basis of

INTRODUCTION

Experimental  identification  of  system
parameters from time response was developed
by Ibrahim (1973 and 1976) and its applicability
proved to be very effective. Since then
subsequent improvements of the method was
made by Badenhausen (1985) and Ibrahim
(1985) in terms of enhanced accuracy,
resolution and anti-disturbance.

Until now experimental identification of model
parameters were confined only to model
vibrations in still air (natural model). In this
paper the identification technique is being
introduced to determine vibration parameters
of a model under wind flow in a wind tunnel
(aerodynamic model). The parameters obtained
from testing the aerodynamic model are non-
constant. They are dependent on wind speed
and vibration frequency.

The primary objective of wind tunnel tests
reported herein is to extract, from the
aerodynamic model parameters, the influence
of wind in the form of wind load derivatives.
For this, the constant natural model parameters
constitute reference values.

The previous method used to determine wind
load parameters under free response was
developed by Scanlan (1971 and 1975) and is
widely used to predict flutter instability for
long span bridges. With the method of Scanlan,
wind load parameters were obtained under
several test procedures depending on the
number of vibration modes to be excited.
Technical constraints as well as the adopted
approximation techniques which form the
essential part of the method had adverse effects
on the accuracy of results obtained.

The method presented in this paper has the
basic advantage in that the limitations inherent
in the conventional method are eliminated. In
this approach only one test procedure is
required because the method is based on
coupled modes of vibrations. The application
of the method presented herein, however, is
possible only by means of high speed digital
computers and appropriate software.

2.  BASIC ANALYTICAL PRINCIPLE
The motion of a structural object under wind

action and assuming a steady flow is described
through the following set of equations (1):
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M,U+D,U+K,U=M,U+D,U+K,U (1)
with
M,,D,, K, = System Parameter Matrices
M., Q“,,K w = Wind Load Parameter Matrices
U = The Displacement Vector

The fundamental similarities of both sides of eq.(1) a

(M,-M U+ (D,-D,)U+(K,~K,)U =
which can be simpljﬁed to read:
MU+ DU+KU =0

with
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Eq.(3) is homogenous and defines a free
response motion, the solution of which leads to
an eigenvalue problem.

In the albescence of wind flow (i.e. zero wind
speed) it has been shown by Lwambuka (1988)
that the identification yields system parameter
matrices M, D K (natural model). Model

parameters identified under the influence of
wind (aerodynamic model) are found to differ
considerably from those obtained in still air.
The influence of wind (i.e wind Iload
parameters) can be extracted by use of eq. (4) as
functions of wind speed.

llow one to re-write eq.(1) in the form of:

) )

3)

4)

3. SYSTEM PARAMETER
IDENTIFICATION TECHNIQUE

3.1 Test Model

The identification of parameters is based on the
measurement of acceleration response signals
by use of accelerometers which are mounted on
the test model at locations which correspond to
the degrees of freedom. The test model selected
for this purpose was a thin plate, elastically
suspended to allow three degrees of freedom as
shown in fig.(1). The model was selected to
comply with the classical airfoil idealization
(=thin plate) from which theoretical wind loads
be derived using the methodology as described
by Theodorsen (1935) and Lwambuka (1988).

Tanzania Journal of Engineering and Technology, Vol. 29 (No. 2}, December, 2006

187



Ladislaus Lwambuka®

K

v ¥
_"'"'} ol 2 i-
c c
=+ '|L " +

Fig.1: Elastically Restrained Flat Plate Model

With The author adopted the vertical coordinate
Ma, M= flat plate masses system which he found to be adequate for

O, , 6y = flat pate moment of inertia response  measurements by  use  of

k = elastic stiffness accelerometers. In fig.2 is a plan view of the test

¢ = reference geometrical length model showing positioning of accelerometers,

v = wind speed whereas the model suspension in wind tunnel

uy, Uz, 13 = vertical coordinates is shown in fig. 3
h,a,p = classical coordinates

Fig.2: Test Model
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3.2 Response Data Processing

The accumulated response signals are first
interpolated to form Langrange’s polynomial
function of 7t order. In order to minimize the
noise modes normally associated with the
measurements, the polynomial function is
integrated numerically. Henceforth, the
terminology  “integrated acceleration” is
adopted. But since the application of eq.(3)
requires also the knowledge of the velocity and
displacement  functions, two  additional
successive integrations are necessary.
Therefore, after three numerical integration
processes of the acceleration response, eq.(3)
leads to eq.(5) which is known as “the
identification equation”:

MU, +D U, +KU.=0, e=lk ()
Where the response vectors are designated:

U = integrated acceleration
U = integrated velocity and
8] = integrated displacement.

If for each measuring station on the test model,
s response signals have been recorded, then the
total number of identification equations k
obtained and represented by eq.(5) will be

k=— ©)

Whereby m, the
order, equals 7.

polynomial interpolation

Eq.(5) as it stands is a product of three
integration processes and therefore contains 3
unknown constants, i.e. the initial response
values. Determination of the 3 integration
constants, which represent the initial
conditions, can be avoided by employing a
differentiation concept, which is prescribed by
Badenhausen (1985). The differentiation
process reduces the number of identification
equations by 2 to form eq.(7):

MU, +D,U. +K,Uc=0, e=lp (7)

with

p=k-2
3.3 Response Data Quantity
In order to facilitate the datum process as
prescribed above, the collection of a sufficient
quantity of data constitutes the first objective of
the test. The accuracy of identification depends
on the degree of indeterminacy of eq.(7), which
is given by the number of identification
equations, p. One must therefore respond to the
basic question: How many response signals
will be required to produce a minimum
number of p equations?
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The quantity of data procured at each Experience gained through the investigations
measuring station is given by of Badenhausen (1985) and Lwambuka (1988),
recommends that the rate of signal recording
. TR should exceed at least 4 times the highest
e A ®) natural frequency of the vibrating system.
whereby From the model specifications of Fig.(1), the
mass and stiffness matrices can be derived to
At = recording time interval (in seconds) obtain the form:
T, = test duration (in seconds)
- W G 4
4. 2-1 .. ;i 0
c 4
(O] 1 M, ©,
M =———x —|M. +M,+ —— 9)
N [ ' ee, +(~)b)] 4
0 ¥, B P
L 4 ¢ 4 &)
k 0 O
K. =10 k£ 0O (10)
0 0 k

On setting up the experiment the following data were established:

M, =M, =1376.10"[kNms]
¢ =0.093[m]

®, =0, =1.570.10" [k\m 5]
k = 0.288kNm |

for which the vibration modes are characterized by the three natural frequencies:

f, =1.53, f, =11.57, f, =14.48[HZ]

with

o
27

f

(11)

(12)

If ,is defined to represent the ratio between the rate of recording, f, and the highest natural

frequency of the system, f;, then the recommendations stated above implies that

fA 1

77f,min=

= >4
f3 m.At.f3

(13)
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A recording time interval of say

At =0.002 sec
is arbitrarily selected. Hence with f, and m =7
we obtain

n, =493.
Observing that the vibrating system of fig.1 has
three recording stations as portrayed in fig.(2),
At specifies a recording capacity requirement
of f,=500 signals/sec on all the three
channels simultaneously.

The duration of the test Im can be obtained

from recommendations on experiences set forth
by Badenhausen (1985). In general, it should

exceed about 10 times that of the period of the
lowest natural frequency. In our case, the
duration of the test is therefore obtained from
fias T, =1.328sec.

For practical purposes, the author recommends
that the actual test duration T should be at least

double the analytical duration 7, :

T =2T, (14)

The recommendation in eq.(14) allows for a

free selection of the amplitude U, as reference

for the analysis fig.4.
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Fig.4: The desirable duration Tin and the actual duration T of the vibration test.

4. WIND LOAD PARAMETERS

After numerically processing the procured
response signals to form eq.(7), the
identification of system parameters DK

follows directly by use of the time domain
methodology as described by Badenhausen in
1985 and Lwambuka in 1988. With eq.(4), wind

load parameter matrices M, D, K, can be
extracted and eq.(1) becomes definitive. For
evaluation purposes, we seek a classical
presentation of the wind load parameters by
transforming eq.(1) into classical coordinates
U. A transformation matrix is defined as
follows:
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u u u
= 3 3
§
hlo 1 0
} 1
T=a|—- - 0 (15)
C C
Bl 1 e 1
L C C C._]
so that
M=T"MT"
D=T"DT" (16)
K=T"KT"
U=TU 17)
Introducing an arbitrary, dimensional factor matrix, F, of the form
Lpvie 0 0
F,=| 0 Lpc? 0 (18)
0 0 Lpv’e®

Eq.(1) can be re-written in dimensionless wind load matrices M :,,I D, K :, as well as dimensionless

= =

response vectors U",U", U i given by eq.(19) below

=

M. U+DU+K U =F,| M, U+ D wU+ K w U* (19)

The dimensionless response vectors of eq.(19) assume the form:

. _'“_" h
cza . L ¢
= ].2 = .- =
r= U=\« Ur=|a (20)
2-- .
v v
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whereas the dimenionless wind load parameters are presented as follows:

* = =

Mwll M'wiz M3
0 0 = =
0 (| M*w21 MY w22 M*w23
| - - (21)

MY w31 M*w32 MTya3

- el

z* o o

~ i Dyl D* wil2 D* wi3
@ 0 = = =

D™= o & o || D"wa D°wa22 D"w2

T 0 a')‘l

(22)

D*w31 D*w3z D"w33

(23)

The matrix coefficients in Equations (21), (22) and (23) contain a total number of 27 elements. These
are presented in this paper in Figures 5, 6 and 7 as real functions of the reduced frequency.

*¥ @wce
W = (24)
Vv
Where
® = frequency of the vibrating system
c = reference geometrical length
v = wind speed
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Fig.5: The Wind “Mass” Coefficients, M " wij
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Fig.6: The wind “damping” coefficients, D wij
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Fig.7: The wind “stiffness” Coefficients, K" wij

In Figures 5, 6 and 7, experimentally obtained

and 7 for most of the coefficients. The
functions of wind load coefficients under this

deviations stem from the discrepancy of the

method are being compared with real test model from an ideal flat plate as well as the
theoretical values, given in APPENDIX I, approximated overlapping of elastic supports
which are derived from the Theodorsen’s

and vertical coordinates (Figs. 1 and 2).
complex functions.
The accuracy of the method can further be

5. RESULTS verified by treating the model suspension as a

Good agreement between experimental and
theoretical results can be observed in Figs. 5, 6

real structure and solving the eigenvalue
problem using experimentally obtained wind
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load parameters. The solution presented in

V,=9.8m/s,
fig.8 provides the critical wind speed of

which defines the onset of flutter instability.
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Fig.8: Determination of critical wind speed using experimentally
obtained wind load parameters.

Repeating the analysis with theoretical wind load parameters leads to solutions presented in Fig. (9)
with a critical wind speed of ¥V, =11.7m/s,
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Fig.9: Determination of critical wind speed using theoretical
wind load parameters (Appendix I)

The actual wind speed observed in the wind
tunnel at which the model structure began to
flutter was

Vf =10.3m/s,

Since the critical wind speed obtained by use of
experimentally obtained wind loads is fairly
close to reality, the accuracy of the new method
would appear to be well justified.

6. CONCLUSIONS
On the basis of experimental results presented
in this paper the following conclusions can be

drawn.

1) The time domain identification technique
provides an advanced approach for

2)

3)

experimental determination of wind load
parameters.

In comparison with the conventional
method., the new method not only
reduces the technical requirement and
experimental work on wind tunnel tests,
but also increases the accuracy of results.

Although the method of approach
presented in this paper bears the
advantages over the conventional one, as
pointed out under item 2 above, the data
processing effort is extremely high. It
requires the use of a high speed digital
computer and a set of special software for
data processing.
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Appendix I: Theodorsen’s Real Functions of Wind lLoad Parameters

The wind “mass” coefficients turn out to constant values of the form:

Mlv” T
M:Pl;’ = ()
. 2
M, :_5
M:m = 0~
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Whereas the wind “stiffness” coefficients take the form:

- 27ZG
Awll =_.T
. 2F
K\l'l.‘! = R-{ =2 G‘}
W w
* 2
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w - w 2w w
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K, :E{ .
™ 2w
K;}? = ﬂ{ Gt = Gx = 21?‘: + F }
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with

F = The real part of Theodorsen — Function
G = The imaginary part of Theodorsen — Function

Appendix II: List of Symbols

+

Notation for dimensionless parameter
Reference geometrical length

Spring constant

Profile length

Vibration frequency

Real part of Theodorsen — Function
Imaginary part of Theodorsen — Function

oMe H=n

T o Wind Load Coefficients

wij 2 wij ? wij

Displacement vector in classical coordinates h,a f

Displacement vector in vertical coordinates u, u, u,

Transformation matrix
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M D K, System matrices based on U
k- | 2

M,D K, System matrices based on U

Fy Dimensional factor matrix

M D K,  Windload matrices based on U
V3 )

M. D K., Wind load matrices based on U
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