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ABSTRACT

Geometric programming has been used to calculate a large number of different ideal and non-ideal equilibria, including,
for the first time, combined non-ideal reaction and phase equilibria. For non-ideal systems the primal program is solved a
number of times with the non-ideal terms fixed each time. After each primal solution, the non-ideal terms are updated
using the corresponding dual solution. This iteration generally converges. We have included one counter-example, where
the failure is caused by the equation of state, which cannot give correct roots.
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INTRODUCTION

Calculation of phase and/or reaction equilibria
is generally complex, since the functions are
highly nonlinear, the variables may have very
small values, and phases may appear and
disappear during the calculations. No one
method can guarantee solution in all cases, and
there is probably no single method that is
always best. Nevertheless, geometric
programming is a powerful optimization
method that may be used for all kinds of
equilibrium calculations.

However, there has not been much published
literature on applying it to equilibrium
calculations. Previously, publications were
more numerous (Passy and Wilde 1968; Dinkel
and Lakshamanan 1979; Geana 1981a,b; Ruda
and Thompson 1985), but except for one set of
papers they were all for ideal systems. The
three papers (I-Il[) on non-ideal systems,
(Ohanomah and Thompson, 1984) treated only
phase equilibria. Rather few publications have
addressed simultaneous phase and reaction
equilibrium calculation. Some of the other
contributions include those by Smith and
Missen (1988) and McDonald and Floudas
(1995a, b).

The purpose of this paper is not to derive new
algorithms, but rather to apply the geometric
programming, and to show its ability in
describing non-ideal systems. As part of this,
we will write down the equations in a more

typical chemical engineering notation, since the
general notation chosen by most authors
(Wilde and Beightler, 1967) make it a bit hard
to see how to formulate the equilibrium
equations.

In most of the introductory literature on
geometric programming (Wilde and Beightler,
1967; Converse, 1970; Zahradnik, 1971) it is
pointed out how the dual program is most
often much easier to solve. For phase and
reaction equilibria, the opposite is the case.
Formulating the equilibrium in the customary
manner and then manipulating it slightly gives
a dual program in geometric programming,
from which a primal program can be written
down and solved.

The connection between the primal and the
dual program can be found using either
Lagrange multipliers. The multipliers for the
primal are the variables for the dual and vice
versa. Alternatively the arithmetic-geometric
inequality (which gives the method its name) is
used. However, when the primal or dual is
solved, the Lagrange multipliers are not used
during the calculations.

PROBLEM FORMULATION

Phase and/or reaction equilibria at fixed
temperature (T) and pressure (P) are
formulated in the most general way as a
minimization of Gibbs energy (G) with respect
to the mole numbers. It is simpler to use mole
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numbers and not mole fractions, since the
former are all independent of each other. Mole
fractions have to be used in subroutines for
calculating  the non-ideal contributions
(fugacity coefficients, activity coefficients), but
the mole fractions are of course found easily
from the mole numbers. Thus, the starting
point is

minG(n) =min» > utn' (1)

subject to non-negativity of all mole numbers
njk=0

and the abundance equations (constancy of the
constituent atoms),

>, %—[Z n§)=b.- @

Here, pjk is the chemical potential of component
j in phase k, and we use j as a component
(species) subscript, k as a phase superscript,
and 7 as an element (atom or species in the case
of phase equilibria) subscript. The indices i, j, k
all start at 1. In the abundance equations, a;; are
the number of i-atoms in component j, and b;
the total moles of atom i. If the calculations are
for only phase equilibria, the components are
the natural building blocks, so then a;;= di; (the
Kronecker delta) and b; = b; the total number of
moles of component j. However, it is fully
possible in this case also to let the components
arise from reactions, which might be quicker
with many components made up of few atoms.
Alternatively, the species can be made up of
groups, or combinations of atoms and groups.

The individual chemical potentials may be
written as,

k

-

k.o

J

fi =yj@;P or fi=xjyiP} (3
and [} =P

M =put° +RT In

Where f is fugacity, ¢ is fugacity coefficient, x
and y are mole fractions, y is activity coefficient

and Ps is the pure component vapor pressure.
Superscript o denotes standard state, which for
fluids is ideal gas at pressure Po. In the
alternative using activity coefficients there
should in principle also be a Poynting
correction and a fugacity coefficient for the
pure component vapor. However, we only
apply this model at low to moderate pressures
as is customary, and then the simplification
used is usual and acceptable. The models
implemented here are only for non-electrolytes,
and also do not include the use of Henryan
activity coefficients, but geometric
progamming can handle all models. Equations
of state models are used for the vapour phase,
but may be applied even for the liquid phases.
We now rewrite the expression for the
component chemical potential as follows to
separate the mole fraction term from the others,
and we also change the sign:

$ n*
—Fff=lnc;—ln—’ 4)

k
where: n" =Z n; and

k.o
My P s
C:f = exp _{ RJT + ln lpf P” J (4(1))

k.o ]

: P '
or ¢} =exp _[{;}T +Iny’ —’OJ (4(ii))

The letter ¢ indicates that we treat also the non-
idealities as constants at the given T and P. This
is of course not so, but they are updated after
each solution of the primal problem. Otherwise
for ideal or pure condensed phases, the non-
ideality terms vanish.

Substituting equation (4) into the Gibbs energy
expression (1) gives:

_G s Z Z n_f {In c;f —In n_f. +In n* }(4(iii))

which on combining the first two terms and
rearranging the expression gives:
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G k

.
= nfln—L+ n*Inn* (5
RT ; 2 J ?I;f ZJ.: t f ( )

Exponentiating equation (5) gives instead:

GXP(_R—C;]:H I1 [c—] ) ©

S = n;

This is a maximization formulation, referred to
as F5 by Smith and Missen (1988). The right
hand side of equation (6) with the product is
almost the standard geometric programming
dual. However, the product for the phases
should go from 0 and not from 1 to be of
standard form. This cannot be fixed just by
renumbering. Instead, a zero-phase is
introduced with mole numbers 1. To have no
change in the value of the objective function
(6), this means the c¢s” for the zero phase must
be equal to the ns’, i.e. ¢ = n%. Since the last
factor contains the sum of the mole numbers in
each phase, it is also necessary that

Z:;J?:l

which becomes the normalization equation of
the standard dual program.

(6(1))

Finally, the abundance equations have to be
made into the standard orthogonality
equations of the dual. First we write the
abundance equations as,

Z Z “u‘”j‘ -b,=0
7

k

(4(i1))
Definin g the zero-phase abundance by
aj = - bi we can write fork =0,

— o ~q
—b, —Z a;nj since
j

> —bn§=-by n=-b, (4(iii))
i

i

and the abundance equations can then be
written ( summing the phases from 0) as,

Z Z agnj =0 (7)

k=0 j=1

The definition of a dummy phase is not
necessary if one uses primal NLP formulation.
The problem is now formulated as a standard
dual program of geometric programming. The
corresponding primal program is then,

min H u; (8)

where, u are the primal variables, one for each
element in the dual. The restrictions on the
primal variables are that u; > 0. (In the general
formulation of geometric programming the
primal objective function has the same form as
the constraints here (eq. 9), but because of the
special properties of the artificial zero phase we
get the simple objective function in eq. (8).
Furthermore, the primal objective function is
subject to the following kind of constraint, one
for each phase

g"=3 &[] #* <1 (9)
¥ i
with ¢k> 0.

The latter is fulfilled from the definition of ¢ in
the dual. There are as many terms in each
constraint summation as there are components
in that phase, and each term in the constraint
corresponds to what we may call a calculated
mole fraction. That is, if the constraint is
binding, i.e. g¥ = 1, the calculated mole fractions
sum to one and the calculated phase is present.
If the constraint is <1, the calculated mole
fractions do not sum to one, and the phase is
not present.

This is the same kind of test used in other
stability or equilibrium calculations. Consider a
typical example for bubble point calculation: If
the calculated equilibrium mole fractions in the
vapour sum to less than one the liquid is below
its bubble point, if they sum to one it is at its
boiling point, if they sum to more than one the
liquid phase is really all vapour. Also tangent
plane calculations, as described by Michelsen
(1982), use a calculated mole fraction which
sum to one when the new phase is at
equilibrium with the old.
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It should be pointed out that in geometric
programming, new phases are not introduced
into the calculations as they proceed. The
phases one wish to test for must be assumed
present from the start, and then the constraint
value will tell if a phase is physically present or
not.

To calculate for non-ideal systems, the
geometric programming must be used
iteratively. First, the primal program is solved
using ideal-system values of the c’s. The
calculated mole fractions and mole numbers
are then used in the dual to update the ¢s” and
so on. There is no a priori guarantee that such
iterations will succeed, but our experience is
that they indeed do so.

NUMERICAL EXAMPLES
The proposed method has been tested
successfully with several examples, some of

which are shown in Tables 1-7. When a phase is
indicated as absent, it means the phase was
included in the calculations but it is not present
at equilibrium. The geometric programming
code used was made by Dembo (1972) and
provided by the Department of Chemical
Engineering at the Technion, Israel. We
modified and updated the code to allow for the
iterative calculations needed for non-ideal
systems. The UNIFAC code was provided by
the Department of Chemical Engineering at
DTU, Denmark. We made the SRK code. In
addition, we have implemented the NRTL
model as an alternative to UNIFAC, with the
gas phase predicted by the SRK equation and
have included some results for comparison.
Physical properties for the components were
taken from Poling et al. (2001).

Table 1. Solid-Gas Equilibrium in a Blast Furnace at 1363 K, 1 atm. Feed moles: FeO 1.00, C 2.00, CO

0.75, H2 0.75 and O 0.5

Specie Phase Equilibrium mole fractions

This work™ Lantagne et Castilo and

al. (1988)" Grossmann (1981)

Fe Solid (s)-1 1.0 1.0 1.0
FeO Solid (s)-2 0.0 0.0 0.0
C Solid (s)-3 1.0 1.0 1.0
E0 Gas 0.7834D+00 0.7834D+00 0.7834D+00
CO2 Gas 0.1754D-02 0.1736D-02 0.1736D-02
H: Gas 0.2139D+00 0.2139D+00 0.2139D+00
O, Gas 0.1239D-17 0.2864D-11 0.2864D-11
HO Gas 0.8643D-03 0.8556D-03 0.8567D-03

e Ideal gas and pure solids
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Table 2. Chemical Equilibrium of an Equimolar Mixture of EtOH-HAc at 358 K, 1 atm. Feed, moles:
EtOH 0.5 and HAc 0.5

Specie Phase Equilibrium mole fraclions
This Lantagne et Castilo and McDonald and Floudas (1995b)%
work” al. (1988)* Grossmann
(1981)*
EtOH Vapour 0.06995 0.13841 0.07536 0.07531
HAc Vapour 0.06995 0.13841 0.07536 0.07531
Water Vapour 0.43190 0.36159 0.42464 0.42469
EtAc Vapour 0.43190 0.36159 0.42464 0.42469
Liquid- Absent Absent Absent Absent
1
Liquid- Absent Absent Absent Absent
2

* Vapor SRK, Liquids UNIFAC; # Vapour SRK, Liquids UNIQUAC; +*Vapour Ideal, Liquids Wilson's
equation; $Liquids NRTL.

Table 3. L-L Equilibrium of a Mixture of Toluene-Water at 298 K, 1 atm. Feed moles: Toluene
0.35251, Aniline 0.59846 and Water 0.04633

Specie Phase Equilibrium mole fractions

This work” Castilo and McDonald and Previous PRO/II

Grossmann Floudas work? (1991)*

(1981)+ (1995b)+

Vapour  Absent Absent Absent Absent Absent

Toluene Liquid-1 0.35262 0.36692 0.34629 0.37585 0.10669
Aniline Liquid-1 0.61530 0.61738 0.57666 0.61207 0.81254
Water Liquid-1 0.02208 0.01569 0.07575 0.01231 0.08047
Toluene Liquid-2 0.00006 0.00046 0.00007 0.00000 0.00074
Aniline Liquid-2  0.00001 0.02510 0.00496 0.00015 0.00618
Water Liquid-2  0.99993 0.97444 0.99364 0.99984 0.99378

‘Liquids UNIFAC;  *Liquids NRTL Equation;  *SimSci International commercial code (NRTLZ

Table 4. V-L-L Equilibrium of a Mixture of Benzene-Acetonitrile-Water at 333 K, 0.769 atm: Feed
moles: Benzene 0.34359, Acetonitrile 0.30923 and Water 0.34718

Specie Phase Equilibrium mole fractions

This Lantagne et Castilo and McDonald and Previous PRO/II

work” al (1988)* Grossmann (1981)*  Floudas 1995b*  work* (1991)%
CeHe  Vapour 045557  0.46972 0.46937 0.47848 0.43479  0.41043
CHsN Vapour 0.34512 0.28920 0.28997 0.28180 0.36983 0.35167
H.O Vapour  0.19931 0.24108 0.24066 0.23970 0.19538 0.23789
CsHe  Liquid-1 0.00099  0.00265 0.00268 0.00256 0.00112  0.00159
CHsN  Liquid-1 0.07589  0.07929 0.08008 0.07617 0.07420  0.09136
H>O Liquid-1 0.92312  0.91810 0.91724 0.92127 0.92467 0.90706
Ce¢He  Liquid-2 039735  0.45340 0.45336 0.47880 0.34390  0.40383
CHsN  Liquid-2 0.52823  0.47030 0.47092 0.45409 0.54413  0.51031
H>O Liquid-2 0.07442  0.07634 0.07572 0.06728 0.11120  0.08560

‘Vapour SRK, Liquids UNIFAC; #Vapour ideal, Liquids NRTL; Vapour ideal, Liquids NRTL ;
$SimSci code
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Table 5. V-L-L Equilibrium of a Mixture of Benzene-Acetonitrile-Water at 300 K, 0.10 atm.

Specie Phase Equilibrium mole fractions
i This Lantagne et Castilo and McDonald and Previous PRO/II
work® al (1988)* Grossmann (1981)*  Floudas 1995b)* work?® (1991)%
CsHe  Vapour 0.39866  0.34950 0.34756 0.34928 0.39837 0.34592
CHsN Vapour  0.35482 0.31402 0.31246 0.31382 0.34507 0.31119
H.O Vapour  0.24652  0.33649 0.33998 0.33257 0.24657 0.34289
CsHs  Liquid-1 0.00044  0.00020 0.00019 0.00018 0.00018 0.00015
CH;N Liquid-1 0.02634  0.02995 0.02958 0.02997 0.02016 0.01887
HxO Liquid-1 0.97322  0.96985 0.97023 0.96985 0.97966 0.98098
Liquid-2 Absent Absent Absent Absent Absent Absent

Table 6. V-L-L Equilibrium of a Mixture of n-Decane Carbon dioxide at 342.9 K, 50.83 atm: Feed
moles: Carbon dioxide 0.650, n-Decane 0.3350

Specie Phase Type

Equilibrium mole fractions

This work” Inomata et al. (1986)*
Carbon dioxide Vapour 0.999295 0.999
n-Decane Vapour 0.000705 0.001
Carbon dioxide Liquid-1 0.451294 0.377
n-Decane Liquid-1 0.54878701 0.623
Liquid-2 Absent n.a

“Vapour SRK, Liquids SRK;

+*Experimental values

Table 7. V-L-L Equilibrium of a Mixture of n-Decane Carbon dioxide at 248.15 K, 15.89 atm: Feed
moles: Carbon dioxide 0.650, n-Decane 0.3350

Specie Phase Type Equilibrium mole fractions
This work” Kulkarni et al. (1974)+

Carbon dioxide = Vapour 0.999999 0.999

n-Decane Vapour 0.000001 0.001

Carbon dioxide  Liquid-1 Absent 0.266

n-Decane Liquid-1 Absent 0.734

n-Decane Liquid-2 0.026322 0.084

Carbon dioxide  Liquid-2 0.973678 0.916

“Vapour SRK, Liquids SRK; +Experimental values

DISCUSSIONS polymerization) in

For all examples except CO:-n-decane system,
the geometric programming code gives
comparable results to those obtained by others
using different methods. Some difference,
especially in very small mole numbers, are to
be expected which in our case may be
attributed to slight differences in the standard
Gibbs free energy and/or vapour pressure
values used or predicted among others. Also
where non-ideality predicting model (in our
case, UNIFAC) could not adequately account
for the entire behaviour (such as

the vapour phase as
evidenced in Table 2, one could expect
problems (McDonald and Floudas, 1995b). This
was confirmed by solving the same problem, in
the first case using Free energy data from Stull
et al. (1969) and in the other from Reid et al.
(1988) when the two results were found to vary
slightly. Since the conditions were not
completely identical, the observed variations
are also to be expected.

The failure to calculate the correct equilibria for
the system carbon dioxide - n-decane reflects a
failure of the underlying equation of state. At —
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25°C  this system has only vapor-liquid
equilibrium (VLE) at pressures below 16.10 bar
according to measurements (Kulkarni et al
1974) and as described by Baker et al (1982). At
16.10 bar there is a three-phase equilibrium
(VLLE). At slightly higher pressures there is a
liquid-liquid equilibrium between CO. mole
fractions of around 0.78 to around 0.92, and a
small region of VLE at mole fractions of CO;
higher than around 0.92. This small VLE region
vanishes quickly as pressure is raised, leaving
only the LLE region.

Our simple SRK equation of state which does
not include interaction parameters failed to
give anything but VLE which is a common and
sometimes expected failure of many equations
of state which we tested in the commercial
simulator Hysys. Baker et al. (1982) managed to
calculate all the equilibria, including the three-
phase equilibrium at 16.134 bar. They give no
details of their calculations. Using another in-
house equation of state (VRK), Vonka et al.
(1993) we managed to calculate all the
equilibria, including a three-phase at 16.657
bar, and with the small VLE region
disappearing at 16.61 bar. The results for the
various equations of state we tested are
summarized in Table 8.

Table 8. Equilibria for CO; — n-decane: at -25°C.

Equation of state Equilibria
SRK, our version VL only
SRK, Hysys VL only
PR, Hysys VL only
Sour SRK, Hysys VL only
GCEOS, Hysys VL,LL

VRK, Own program VL, LL, VLL

CONCLUSIONS

A Generalized Geometric programming code
modified and extended by us and
implementing UNIFAC model for predicting
system non-idealities was tested on various
equilibrium problems. The code has been
found to be versatile and robust for calculating
phase and/or reaction equilibria. As any other
general code, it has its own strengths and
weaknesses. However when consistent and
correct thermodynamic data and non-ideality
models are used, the code converges to the

correct type of phases and equilibrium
compositions.
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NOMENCLATURE
Symbols
Description Units
ck  Coefficient j in phase k [-]
fy  Fugacity of j in phase k [atm]

Index for chemical element [-]
Index for chemical species [-]
Index for phases [-]
[-]
[-]

(=N

j
k
n  Vector of mole numbers -
nk  Mole number j in phase k -
P  Pressure [atm]
R Universal gas constant [J/mol K]
T  Temperature [K]
x% Liquid mole fraction j in [-]
phase k
y& Vapour mole fraction j in [-]
phase k
Greek Letters
Description Units
¢k Fugacity coefficient of [-]
component j in phase k
vY Activity  coefficient of [-]
component j in phase k
uk% Chemical potential of [J/mol]
component j in phase k
Acronyms
Description
DTU Danish Technical University
EOS Equations of State
GS Gas-Solid
NLP Non-Linear programming
NRTL Non Random Two Liquid
SRK Soave-Redlich-Kwong Equation of
State
UNIFAC Universal Quasi Chemical

Functional Activity Coefficients
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VL Vapour-Liquid
LL Liquid-Liquid
VLL Vapour-Liquid-Liquid
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