PROGRAM FOR THE ANALYSIS OF PLANE TRUSSES

John K. Makunza
Lecturer in Structural Engineering
University of Dar es Salaam, Tanzania

ABSTRACT

The ‘TRAP - TRuss Analysis Program’ can assist engineers in the analysis of plane truss-type structures, as well as
prove an excellent basis for understanding the “finite — element” method. The Program is completely menu-driven, with
all nodes, elements, and load data entered through an input file. TRAP includes plotting for displaying the truss geometry
in its original shape showing all nodes and support points. In the analysis process, firstly the structure data; e.g number
of nodes, elements, materials and supports are to be defined. Secondly, element properties and support constraints have
to be specified. Finally, nodal global loads are then defined. The program output include; displacements for each node,
axial forces, length of each element and reactions at the supports.

The program aims at reducing the time of analysis and increase the accuracy of calculations as well as storage of the
analysed data. The program caters for manual methods of truss analysis such as method of sections or joint method. It
has been found that the program is efficient and has no limitations on the number of nodes and elements. The program is

suitable for use by design engineers in analysing Plane — Trusses of any size.

1.0 INTRODUCTION

The ‘TRAP - TRuss Analysis Program’ can assist
designers in the analysis of plane trusses by
speeding the analysis work and increasing the

accuracy together with enhanced storage of the
analyzed data. This will cater for manual analysis of
trusses which is tedious, susceptible to errors, and
takes longer time especially when the number of
elements is large, like the truss shown in Figure 1.
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Figure 1: Plane truss

The program TRAP has been developed using the
stiffness or displacement method of analysis [1,2,3]
because it is an effective tool in the analysis of both
statically determinate and indeterminate structures. In
additional to that, the method yields the
displacements and forces directly, and, it is generally
much easier to formulate the necessary matrices for
the computer operations using the displacement
method; and once this is done, the computer
calculations can be performed efficiently. The
program is suitable for use by design engineers in
analysing Plane — Trusses of any size.

2.0 THE STIFFNESS METHOD OF ANALYSIS

Application of the stiffness method of analysis
requires subdividing the structure into a series of

discrete finite elements and identifying their end
points as nodes. For truss analysis the finite elements
are represented by each of the members that compose
the truss, and the nodes represents the joints. The
force-displacement properties of each element are
determined and then related to one another using the
force equilibrium equations written at the nodes.
These relationships, for the entire structure, are then
grouped together into what is called the structure
stiffness matrix K. Once it is established, the
unknown displacements of the nodes can then be
determined for any given loading on the structure.
When these displacements are known, the external
and internal forces in the structure can be calculated
using the force displacement relations for each
member. Some basic definitions and concepts of the
stiffness method of analysis are herein given:
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2.1 Identification of Nodes and Members

The first step when applying the stiffness method is
to identify the nodes as well as elements or
members of the structure. For example in Figure
2(a), each node is identified by an inscribed number

and each member is denoted by a plain number.
Also, the “near” and “far” ends of the member are
identified as shown in Figure 2(b). The tiny
numbers show the two degrees of freedom at each
node.

200
(a) Truss

d 1
@ (near)

(b) member 1

Figure 2: Identification of nodes, members and degrees of freedom

2.1.1 Global and Member Coordinates

In plane trusses, there are two coordinate systems,
the first one is a single global or structure coordinate
system, using X, y axes, which is used to specify the
sense of each of the external force and displacement
components because they are vector quantities. The
second is the local or member coordinate system
identified using x’, y’ axes which is used for each
member to specify the sense of direction of its
displacements and internal actions. The origin is at
the “near” node and the x’ axis extends toward the
“far” node as shown in Fig.2(b) for member 1.

2.1.2 Degrees of Freedom

Each node of a plane truss has two degrees of
freedom; one in each global coordinate direction.
The unconstrained degrees of freedom for the
structure represent the primary unknowns in the
stiffness method equations. For example, the truss in
Figure 2 has 10 degrees of freedom, in which, at
nodes 1 and 5 there are constrained degrees of
freedom, while all others are wunknown or
unconstrained degrees of freedom. Due to the
constraints, the displacements at node 1; in y—
direction is zero and at node 5 both displacements
are zero.

2.2 Deformation of plane truss element

Each plane truss element deforms axially along its
axis. Axial deformation is the lengthening of a line
element caused by equal and opposite longitudinal
forces as shown in Figure 3.

Figure 3: Axial deformation

The axial deformation of an element of length L is
governed by equation:

L
o0=q— (1
154 (1)

where &= axial deformation

q = axial load

L = length of the element

E = elastic modulus (Young’s modulus of elasticity)
A = cross section area of the element

From Equation (1), the axial force ¢ can be
expressed as:

=—0 (2
1= 2)

AE
The value Tis termed as stiffness, k, and

therefore Equation (2) may be rewritten as

q=ko ...(3)

2.3 The Element Stiffness
Element Axes

Matrix in

The forces at the ends of a truss member are related
to the displacements at the ends by the element
stiffness matrix. Figure 4 shows a typical plane truss
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element “i,j”. By treating the element as a simple
structure with four degrees of freedom, the element
stiffness matrix can be found. To obtain the element

Si'x K

Ky

Freedom 1

K23 Sjix K43

L * K33

Kis Freedom 3

stiffness matrix the force system required to
maintain unit displacements (§; = 1 or §; = 1) at
each freedom in turn must be evaluated.

K2
K41 ! Kz Ka
é» K1 Sijy o ‘me-»KZ')Z

K24

Freedom 2

Ku4
K34
8jiy

K14 Freedom 4

Figure 4: Evaluation of stiffness terms

For a plane truss or pin jointed member, only axial
forces are involved and the stiffness terms can be
found by inspection of Figure 4. All other stiffness
coefficients are zero except;

EA EA
kII =k33 =Tandk13 =k31 =—T, hence
q« A_E 0 _A_E 0 6ijx
L L s
T 0o 0 0 0% 4
G _AE 0 AE 0 .
L L s,
9wl | 0 0 o0 o|L7®

The subscripts for force and displacements can be
decoded as follows. The first two subscripts identify
the element by the nodes at its ends, with the first
character indicating the end under consideration.
The third subscript defines the direction of the force
or displacement (in the element axes system). If
Eqn. (4) is split into sub matrices then;

q; k; k; 5;']'
= ..(5)
i kji kjj 61'1'
hence,
q; =k 0 +k;0;
and
q; =k;0; +k;0; : (6)

On introducing the stiffness values, and eliminating
rows and columns with zero k,, the load -
displacement equations may be written in matrix
form as:

9; | _AE| 1 -I J;
q,| L|-1 1]|6;

Or
q=K's (7
1 -1
where k'=A—E ...(8)
L |-1 1

The matrix, Kk’, is called the member stiffness
matrix, and it is of the same form for each member
of the truss. The four elements that comprise it are
called member stiffness influence coefficients, k.
Physically, k’;; represents the force at joint i when a
unit displacement is imposed only at joint j.

The structure stiffness matrix K is determined by
assembling the transformed stiffness matrix k’ for
each element. Usually this is done upon specifying
all nodes, elements and materials of the structure.
The transformation is done using force and
displacement transformation matrices as expresses
in the following sections.

2.4 Displacement and Force
Transformation Matrices

Since a truss is composed of many members
(elements), it is deemed necessary to transform the
member forces ¢ and displacements & defined in
element local coordinates to a global x,y coordinate
system for the entire truss. For consistence, x is
taken to be positive to the right and y positive
upward. The smallest angles between positive x,y
global axes and the positive x’ local axis will be
defined as Oy and Oy as shown in Figure 5. The
cosines of these angles will be used in the matrix
analysis that follows. These will be identified as A,
= cos O, and Ay = cos 6,. Numerical values for A,
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and A, can be generated by a computer when the
coordinates of near end i, (X;,y;) and far end j, (X;,y;)
of the member have been specified. For example, if

X, —X, X, —X,
A =cosf, = = !
L J(x;-x,)+(y;,->:)
_ YTy Yi—=Y:
A, =cos@, =

For easy handling of the analysis, the origin of the
structure has to be located at a point where the x,y
coordinates of all the nodes will be positive.

2.4.1 Displacement Transformation
Matrix

In global coordinates each end of the member can
have two degrees of freedom or independent
displacements (ref Figure 5); namely, joint i has A
and Ay, and joint j has Ajix and A;y. Considering
these displacements along the member; it is found
that when the far end is held pinned and the near end
is given a displacement of Ay, (Fig. 5), the

L _\/(xj_xi)+(yj_yi)

member ij of the truss shown in Fig. 5 has
coordinates (Xpy;) and (X;y;), then the direction
cosines are found by Eqns (9) and (10); thus;

...(9)

...(10)

corresponding displacement (deformation) along the
bar is Ajcos0y. Likewise, a displacement Ay, will
cause the bar to be displaced Aj;,cos0y along the x’
axis. The effect of both global displacements is
therefore

5ij = A,.jx cos@, + A,.jy cos By

In a similar manner, positive displacements A;;x and
A;iy successively applied at the far end j, while the
near end is held pinned, Figure 5, will cause the
member to be displaced;

O, =4, cos0, +A, cos,

Displacement at far end '

Figure 5: Global and local displacements

Letting Ax = cos 65 and A, = cos O, represent the
direction cosines for the member, it follows that:

O, =4, A +4, A,
0,=4, A +4, 4

which can be written in matrix form as;

O |_[A 4 0 04 ..(11)
5,-,- 0 0 A, ﬂy Aj,-x
| Ty |

Or

6=TA ...(12)
where

o_[A 4, 0 0 s

o o A ly

From the above derivation., T transforms the four
global x,y displacements A into the two local x’
displacements &. Hence, T is referred to as the
displacement transformation matrix.

2.4.2 Force Transformation Matrix

If a force is applied at the near end of the member,
the far end held pinned, Fig. 6, here the global force
components of g;; at i are given by;

Qijx =g, cos 0.
Qijy = qij cos ey

Likewise, if g; is applied to the far, Fig. 6, the global
force components at j are

jSy =q; cos 0y
jSx =4 cos 6,
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Qijx

Load at near end '1'

Load at farend 'j'

Figure 6: Loads in local and global coordinates

Using the direction cosines Ay = cos 6, and A, = cos
0y, these equations become

Qijx =qij'1x ’ Qijy =qij'1y
jSx = qji/lx ’ jSy = qji/ly

In matrix form, the equations are presented as;

Qijx Zx 0 ]
G [_[ A Ol )
jSx 0 A, q;;
Qﬁy 0 'ly_
or 0=T"q ...(15)
(A, 0
A, 0
where T = oy A ....(16)
0 4,

In this case 7" transforms the two local (x°) forces q
acting at the ends of the member into the four global
(x,y) force components Q. By comparison, this force
transformation matrix is the transpose of the
displacement transformation matrix, given by Eqn
(13).

2.5 Member Global Stiffness Matrix

The member global stiffness matrix is obtained by
appropriate relating the member’s global force

components Q to their respective global
displacements A. On substituting Eqn.(12) into
Eqn.(7), the member’s forces q can be determined in
terms of the global displacements A at its end points,
namely,

q=k’TA ...(d7)

Substituting Eqn.(17) into Eqn. (15) yields the final
result,

Q=Tk'TA

Or

0=k4

where

k=TkT

The matrix k is the member’s stiffness matrix in

global coordinates. Since T", T, and Kk’ are known,
the matrix k becomes:

A0

k=/1y0A_E1—1/1x/1y00
0 A, | L|-1 1|]|0 0 A, 24,
0 A,

Performing the matrix operations, the results
becomes;

i, i Jy Jy
2 A4, -2 -4 i
C_AE| Ad, X -AA, =3 i
L| -2 -24, 2 44 |i
A4, =X A4 2 )
....(20)
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The location of each element in this 4 x 4 symmetric
matrix is referenced with each global degree of
freedom associated with the near end i, followed by

the far end j. This is indicated by the code number
notation along the rows and columns, that is, iy, iy,
Jv and jy. Like K> here k represents the force-
displacement relations for each member when the
components of force and displacement at the ends of
the member are in the global or x,y directions. Each
of the terms in the matrix is therefore a stiffness
influence coefficient k;; which represents the x or y
force component at i needed to cause an associated
unit x or y displacement component at j. As a result,

each column of the matrix represents the four force
components developed at the ends of the members
when one of the ends undergoes a unit displacement
related to its matrix column. For example, a unit
displacement, Ay, = 1, will cause the four force
components on the member shown in the first
column of the matrix.

2.6 Nodal Equilibrium

Figure 7(a) shows a simple triangulated framework,
and figure 7(b) shows how it might be idealized.

xl

1

U

zzz

Figure 7: A simple triangulated framework

If node 2 is removed from the truss, its free body
diagram is as shown in fig 8(a), and if the node is in
equilibrium then there can be no net force acting
upon it. Resolving each element force into
components as shown in Figure 8(b), and summing
the horizontal and vertical forces acting on the node
produces the following equations:

P, +0', +0 5, 405, +0 55, =0

and
PZX / q'24
q'21 f q'25
d23

(a)

sz +Q'21y +Q'23y +Q'24y +Q'25y =0
or

P, +q'y + 45 + 4, + 45 =0
where

P _ PZx q, _ Q'ZIx q, _ Q'25x
? PZy ’ . Q'Zly ’ ® Q'25y

Figure 8: Free body diagram for node 2
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Hence, the equ111br1um equatlon for node “1”, which
has elements “1,a”, “i,b”, ° framing
into it, is

Pi + q'ia +q'ib +q'ic + + q'in = 0

One of the fundamental principles of static

Pay 4 =95
92 =95

2X / \ q24 q24
q d23
/ 21 Qo3 25 Q1. =0
‘ QZly = QZly

Figure 9: Nodal forces and element end forces

and the equation of equilibrium for node 2 becomes
P, =q, +4q5; +4q,, +4 5

For node “i” with elements “i,a”, “i,b”, “i,c
n” framing into it, the above equation becomes:

P =q,+q;+tq.+ - +q,

The above equation simply states that the external
applied load vector P; at node “i” must be balanced
by the vectors of internal element end forces ¢4, G,

Gicy ++---- s Gin-
2.7 Structure Stiffness Matrix

Once all the member stiffness matrices are formed
in global coordinates, it becomes necessary to
assemble them in the proper order so that the
structure stiffness matrix K for the truss can be
found. This process of combining the member
matrices depends on careful identification of the
elements in each matrix. This is done by designating
the rows and columns of the matrix by the four code
numbers, iy, iy, jx jy used to identify the two global
degrees of freedom that can occur at each end of the
member. (see Eqn.20). The structure stiffness matrix
will then have an order that will be equal to the
highest code number assigned to the structure, since
this represents the total number of degrees of
freedom for the structure. When the k matrices are
assembled, each element in k will then be placed in

its same row and column designation in the structure
stiffness matrix K. In particular, when two or more
members are connected to the same joint or node,
then some of the elements of each of the k matrices

equilibrium is that for every action there must be an
equal and an opposite reaction. Consequently the
force exerted by an element on a node is equal and
opposite to the force the node exerts upon that
element. Figure 9 illustrates this effect,

G =—95
Gy =—q 55

Expressing the forces as components in the global axes system,

Q25x = Q25x
Q25y = Q25y

will be assigned to the same position in the K
matrix. When this occurs, the elements assigned to
the common location must be added together
algebraically. The reason for this becomes clear if
one realizes that each element of the k matrix
represents the resistance of the member to an
applied force at its end. In this way, adding these
resistances in the x or y direction when forming the
K matrix is symbolic of determining the total
resistance of each joint to a unit displacement in the
x or y direction.

2.8 Application of the Stiffness Method in the
Truss Analysis

Once the truss stiffness matrix, K, is formed using
the methods of the preceding section, it can then be
used to determine the joint displacements, internal
member forces and external force reactions. The
loading vector Q has to be established according to
the external global nodal loads. Also the
displacement vector A has to be established, the
known displacements are at the restrained nodes or
supports and all others are unknown. Recalling
Eqn.(18),

Q=KA

For the first case, the load vector due to external
loads Qy together with matrix K are computed to
produce all the unknown displacements, A,. In
program TRAP, this has been achieved by using the
Gauss elimination procedure.

0, =K.A, (1)
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The second case, involves the determination of the
internal forces for each element utilizing the already
found displacements. The member forces can be
determined using Eqn. (17), in which the
contribution of each global displacement to the axial
force of the element is taken into account. The said
Eqn (17) is again given by,

q=k'TA

Expanding this equation yields
4,
q; | AE[ 1 -I]{4. 4, 0 0|4, |..(22)
[qﬁ]_L[—l 1}[0 0 A, ﬂy] A,
Jiy
Since q; = -q; for equilibrium, only one of the forces
may be determined. In this case, here only q; which

is assumed to be in tension will be determined,
Figure 6. Thus,

A,
-4, A 4] j"f (23)

Jx

A

Jy

qj =%[_ﬂ‘x

In particular, if the computed result using this
equation is negative, the member is then in
compression.

Support Reactions

The support reactions are computed at each node
where the restraint is not equal to zero in a particular
global direction using equation (24), thus:

R, =44, .(24)

Riy = ﬂ‘y ‘qi
Normally, the reaction at a restrained node in any
direction, say in y-direction, Ry, is the summation
of the contribution of each element force that joins
at the specified node.

3.0 THE PROGRAM TRAP

The TRAP program has been prepared step by step
using the stiffness method of analysis procedure as
described in the previous sections. The
programming software was Visual Studio 6.0
Professional [4]. The steps involved in the use of the
program are;-

= Problem definition or truss data in general

= Identification of nodes

= Materials specifications

= Identification of elements
= Restraints introduction
=  Global nodal loads introduction

Upon entering all the above data, the programme
can analyse the structure and give the outputs which
include nodal displacements and element axial
forces. Also it has an option to output the plot of the
original truss shape showing all nodes and the
support points. In case the configuration of the
structure is wrong, the user is advised to carefully
check the input file item by item for corrections,
then rerun the program. Details on preparation of the
input data file is given in the Annex.

3.1 Basic Truss Data

The initial input data required include number of
nodes, number of elements, number of materials,
number of supports joints and number of loaded
nodes. The program reads this input data from an
input file in sequence as follows:

| Read problem title |

!

Read structure size data

NJ = number of joints

NM = number of members
NMAT = number of materials
NSUP = number of support nodes
NLJ = number of loaded nodes

| Read joint, member, and load data |

| Assemble global element stiffness matrix |

| Compute global structure stiffness matrix |

| Introduce support restraints |

| Compute global joint displacements |

| Compute member end loads |

| Compute support reactions |

Y

End program
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J, M, MAT, SUP, LJ;

in which J is the number of nodes, M is the number
of elements, MAT is the number of materials, SUP
is the number of support joints and LJ is the number
of loaded joints.

This is followed by an identification of the nodes by
numbering them in a way that will lead to smaller
half band width, BAND, of the structure stiffness

P P

2 4 6 8
1 7
3 5 77

(a) Small BAND width

matrix K. The numbering is done as illustrated in
Figure 10(a) and 10(b). The band width is given by
the expression;

BAND = maximum((J2 - J1) + 1)* 2

Where J1 is the near end and J2 is the far end of a
particular element.

P P
2 3 4 5
1 8
6 7 7%
(b) Bigger BAND width

Figure 10: Nodes identification

For each element, the area, moment of inertia and
modulus of elasticity have to be specified. Each set of
such parameters has been classified as one type of
material. Therefore one can have a number of types
of materials in one truss. For example;

Let Types of materials be =2

TYPE A I E
10.040 0.0018 3,000,000.00
20.034 0.0016 2,800,000.00

When the material type is 1, the program will take
Area = 0.04m% 1=0.0018m" and

E = 3,000,000N/m’, while for type 2, the program
will take Area = 0.034m’ I = 0.0016m" and E =
2,800,000N/m>.

To each element, the start node J1 and the end node
J2 must be identified. Hence, the input file at this
section will appear as follows;

Elem. No. J1 J2 Type,
e.g; 1 1 2 1

This form of data will enable the program to
recognize the coordinates of each element ends from
which lengths and direction cosines are calculated;
thus

XL =X(J2) - X(J1)
YL =Y(J2) - XJ1)
The length L = (XL*+ YL?)"?

The direction cosines, 4, and 4,, are calculated using
the expressions;

XL YL
A, =— and .

L L
Plotting of the original shape of the truss utilizes the
coordinate values mentioned above.

3.2 Restrained Nodes

The restrained nodes are joints where by
displacements or translations are prevented.
Normally, restrained nodes are referred to as support
nodes. In each restrained node, the directions of
restraints are indicated by either “1” for restrained or
“0” for unrestrained direction. An example (see
Figure 10a) for the said restraints is given as follows:

Node Rest. in -x Rest. in -y
1 1 1
7 0 1

The above table indicates that the restrained nodes are
1 and 7. Node 1 is restrained in both x- and y-
direction, while Node 7 is restrained in y-direction
only. The displacements of restrained nodes are zero
in the specified directions. These restrained nodes
help the structure to be stable and so enable the
solution to be found. For an unstable structure, there
is no solution possible. For the restrained nodes, the
displacement vector A elements are zero in the
respective directions, while those which are not
restrained, the vector elements are unknown
quantities which are solved by the program.
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Stiffness Matrices

There are two stiffness matrices namely element
stiffness matrix, K,, and global structure stiffness
matrix K. Before determining any stiffness matrix,
the matrices are initialized in which K, is a 4 x 4
matrix and the global structure stiffness matrix K
has a number of rows equal to the number of
equations, NEQ, which is 2 x NJ for trusses, and
number of columns equal to half band width,
BAND. Due to the symmetry properties of the
element stiffness matrix, K,, only the upper triangle
has been defined, thus:

let AO = ATE , then

K,(1,1)=A0% 2, K,(1,2)=A0*Z%

K,(1,3)=-A0* Z,
K, (22)=A0* 2,

K,(14)=-A0% A A,
K,(2,3)=-A0% A A,

K, (24)=A0%* %, K,(3,3)=A0* %

K,(34)=A0% A4, K, (44)=A0%* %,

After determining the K, for an element, it is then
added to the global structure stiffness matrix, K at
the appropriate locations. The process is repeated till
all elements are finished. Having the K matrix and
the displacement vector 4, the global external nodal
loads vector, Q, must be prepared. This load vector
has one column with number of rows equal to the
number of equations, NEQ.

3.3 External Loading To The Structure

For the truss-type structure, loads are applied at the
nodes only. Nodes at which the loads are to be
applied have to be defined, after which the load
components are applied at each predetermined node
in the global directions. An example of the load
application with reference to Figure 10(a), assuming
that P = 14 kN, is as follows:

Node X-Component Y-Component
6 0 -14
8 0 -14

(-ve because Y is positive upward)

The units of force are free, therefore after running
the program, the force outputs will be in the units
which the user had determined while inputting the
loads. A sample input file is partly shown in Figure
12.

Solution

Due to the known loads, the program solves for all
the unknown displacements in global directions
using the force — displacement relationship;

Q=KA

The Gauss elimination procedure has been applied
in which the @ matrix is augmented to the global
structure stiffness matrix K. The displacements are
determined by forward elimination and back
substitution. When all displacements in the global
axes system are known, element end forces are then
determined using Eqn.(23), after which reactions are
calculated using Eqn.(24). Some examples of the
program run are given below.

3.4 Sample Run Of Program TRAP

Below is a configuration of a truss that has been
analysed using the TRAP program. In Figure 11, the
inscribed numbers indicate the nodes positions. The
downward arrows are indicating the point loads in
which all nodes in the top chord are loaded each
with a 4.3 kN down ward force. The support points
are nodes 1, 16 and 17. Node 1 is restrained in both
X and Y directions, while nodes 16 and 17 are
restrained in X-direction only. The total number of
nodes is 17 and the number of members is 31. Much
more data on the truss is given in the input file in the
next section. The results are given in array form and
in graphic form in Figures 12, 13 and 14. Figure 15
shows a help file displayed in a separate interface
which is used as a guide when using the TRAP
program. The given example is one the Authors
design projects in which trusses of 12.0m span were
analysed for KKKT —Sinza in Dar es Salaam.
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6000 mm

4 6000 mm

Figure 11: Sample analyzed frame

= PROGRAM FOR AUTOMATIC ANALYSIS OF PLANE TRUSSES: =
= Copyright (c) J. K. Makunza: August 2004: STE - UDSM =
= ‘TRUSS ANALYSIS PROGRAM - TRAP' =

= For further information contact =
= John K. Makunza, University of Dar es Salaam, Tanzania =
= makunza@hotmail.com =

PROGRAM RUN ON DAY AND TIME-=12/6/2006 6:03:42 PM
PLANE FRAME ANALYSIS

NUMBER OF JOINTS 17

NUMBER OF MEMBERS 31

NUMBER OF MATERIALS 1

NUMBER OF SUPPORT JOINTS 3

NUMBER OF LOADED JOINTS 9

JOINT DATA

JOINT X Y RESTRAINTS

1 0 0 1

2 0.768 0

3 0.768 0.768

4 1.536 0.768

5 1.536 1.536

6 2.304 1.536

7 2.304 2.304

8 3.072 2.304

9 3.072 3.072

10 3.84 3.072

11 3.84 3.84

12 4.608 3.84

13 4.608 4.608

14 5.376 4.608

15 5.376 5.376

16 6.145 5.376 1 0
17 6.145 6.145 1 0
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MATERIAL DATA
Area
0.05

No.
1

MEMBER DATA

MEMBER J1 32
1 1 2
2 1 3
3 2 3
4 2 4
5 3 4
6 3 5
7 4 5
8 4 6
9 5 6
10 5 7
11 6 7
12 6 8
13 7 8
14 7 9
15 8 9
16 8 10
17 9 10
18 9 11
19 10 11
20 10 12
21 11 12
22 11 13
23 12 13
24 12 14
25 13 14
26 13 15
27 14 15
28 14 16
29 15 16
30 15 17
31 l6 17

JOINT LOADS
JOINT WX
1 0
3 0
5 0
7 0
9 0
11 0
13 0
15 0
17 0

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHj

)
m

I-Mom E-Mod
0.0044 210000000

-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.

wwwwwwwww

NUMBER OF EQUATIONS =
HALF BAND WIDTH = 6

34

CALCULATEDIJOINT
Y6DISP

JOINT

X-

[elelolololololololelolololelolo ]

DIsP

.00003
.00003
.00005
.00005
.00005
.00005
.00005
.00005
.00003
.00003
.00002
.00002

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

DISPLACEMENTS

00003
00004
00006
00006
00008
00008
00008
00008
00007
00007
00006
00006
00004
00004
00003
00003

12|
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Program for the Analysis of Plane Trusses
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o Trap —*herosofl Viseal Basic [ran ]
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Figure 13: Plot output for the original shape of the truss
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CALCULATED ELEMENT FORCES

MEMBER J1 J2 FORCE LENGTH
1 1 2 8.94 0.768
2 1 3 -48.65 1.086
3 2 3 -8.94 0.768
4 2 4 12.064 1.086
5 3 4 4.64 0.768
6 3 5 -55.21 1.086
7 4 5 -4.64 0.768
8 4 6 19.2 1.086
9 5 6 0.34 0.768
10 5 7 -55.69 1.086
11 6 7 -0.34 0.768
12 6 8 19.68 1.086
13 7 8 -3.96 0.768
14 7 9 -50.09 1.086
15 8 9 3.96 0.768
16 8 10 14.08 1.086
17 9 10 -8.26 0.768
18 9 11 -38.41 1.086
19 10 11 8.26 0.768
20 10 12 2.4 1.086
21 11 12 -12.56 0.768
22 11 13 -20.65 1.086
23 12 13 12.56 0.768
24 12 14 -15.36 1.086
25 13 14 -16.86 0.768
26 13 15 3.2 1.086
27 14 15 16.82 0.768
28 14 16 -39.18 1.087
29 15 16 -21.12 0.769
30 15 17 33.07 1.088
31 16 17 -27.69 0.769

REACTIONS

JOINT RX RY
1 25.46 30.1
16 -48.85 0
17 23.39 0

SOLUTION COMPLETED AT TIME-=6:03:48 PM
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Figure 14: Output of element forces and lengths.
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Prograim for the Analysis of Plane Trusses

S L e T R N2 T S LT e

m Fle G iz B ]
” 3l h = I B Bgetichung ] Furikiety [ ae Beatsren Tegmarce Opbonen &
|tGeneraI) Ir kil I Ipwiei I Sk I 3'u:l.en|
& MELF FILE FOR PROGRAM TRAP ﬂ
oprion Exvl =
D TV 5 By Dr-Ing. JK Makunza
Tit| g
:i: yp Fil= The program TRAP will analyze a plane TRUSS of any abitrary geometry subjected to a set of ted Joint loads in Global
= directions only. Dnwing the analysis, the structure is represented by a mathematical model in which the individual joints and members
r— are jdentified byr reference numbers. The joints are numbered from 1 to the total miber of joints, and the memb ers are numbere d from
Frm —— - L Lo the Lotel rumb er of members. The supp o joints may be msumedb;r e.lth,er pumeel suppms ot rollers which are parallel 1o either
ne= of the globel coordimate ares. The Trugs may be either stati or The gereral xeq\mmsnl. is thaur.msl.
o = be stable under any combinstion of epplied joint loads. Whm\‘.hs structure is not stable, the program will auic inate the
-
fe== Bxacution.
=)
¥
F: PR INPUT DISK DATA FILE FORMAT.
i The input to the program will be through o disk data file. The data fils will sonsist of the problem titls, & struchure size data ng, and
¥y STRU five separate groups of deta containing the propetties of the and the applisd joint loads, Each data group iz identified by a
r NUME header line containing the group title, The following is & description of the required format for the data file:
HUME
HNUME
7 Nam Problern Title Line
rr [NUME The problem tille must contain one statement on one line. o commas ave penitted in the title line, The said kne will be Hsted in the
e 0 problem oulpt for identification.
» ngu
x
P 2 Structare Size Data Line
£ This data line contains 5 numbers: J, M, MAT, 5UF, LJ
TH ) ] [
i STRUCTUR: where  J = aumber of joints (inte get)
? M = numher of mesabers (inte ger)
& MAT = number of materials (inte ger)
12 SUP - number of support joints (integer)
LI - number of loaded joints (indegen)
Joint Coordinatas

entries: I, X(l),Y(I) in which;

Material Data

4 | [ Each line contains four numbers:
s | 5 o 2w @

| s

The first line of thie group showld contain a Litle for joint coordinates followed by one line for each joint. Each line containg thres

= node number (integar)
X('.l) = globel X roordinate of joink I (decimal)
bi1] = globel ¥ coordinate of joint I (de cimel)
The joirts must be numbered from 1 to J. The order in which the joints are mumbered will have no effect upon the solution accuracy o
the recuire § solution time for the program, The joints may be entered in ary order.

The first line of thiz group should cordain a title for material dataftype followed by one line for each different material in the strachae.

ELISISCF . | ByFLatE RUEE. |[@rwindowstife | | st & 8 sa

Figure 15: Help file for program TRAP

4.0 DISCUSSION

This example shows how the Program TRAP is
efficient in the analysis of truss structures. The
program can analyze any plane truss without
limitations in nodes, restraints, and number of
elements. The outputs are displacements and element
axial forces in the units the user may choose. If the
force is negative, it means it is compressive and when
positive it means the force is tension. There is an
option during the run-time from which one can opt to
view the plot of the undeformed structure such as the
one shown in Figure 13. There are two output
windows, one for graphical plot and the other for
numerical tabulated results.

After viewing the results, both numerical and
graphical outputs, you may print to a printer or save
each as a file. You may then highlight and copy the
results to a word document.

5.0 CONCLUSIONS AND RECOMMENDATION

From the analysis and results obtained, it is

concluded that the program TRAP:

«+ can be used to analyze plane trusses of any size
or number of nodes and elements,

o
*

*

is user friendly and solves analytical problems at
higher speed with greater accuracy,

» outputs displacements, axial forces and plot of
the original shape of the truss,

can be installed in windows operating systems
limited to Win95, Win98,

Win Me, Win2000 and Win XP.

0’0

7
°

It is therefore recommended that this program be used
for analysis of plane trusses, as it analyses quickly
with outputs which can be used for design purposes
especially for timber and steel trusses. The program
has to be further developed so as to increase the
graphical outputs such as axial forces in each element
and plot of the deflected shape of the analyzed truss.

This TRAP program is suitable for use during the
analysis of PLANE TRUSSES of any form, after
which the axial forces obtained can be used to design
the respective members in either tension action or
compression action.
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