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ABSTARCT 
 

A study on the chaotic dynamics of a high flux circulating fluidized bed (CFB) riser (10-m high and 76-mm i.d.) using the 

maximum likelihood estimate of the Kolmogorov entropy (KML) is reported. The signals used were measured by using a 

solids concentration fiber optic probe, accuracy of which is reported based on statistical analysis. The sensitivity 

analysis of the parameters used for computing KML was conducted to identify optimum settings, based on the standard 

error, s(KML) and the nature of PDF of the b-values from the reconstructed phase space trajectories. The length of time 

series, N, sampling frequency, fs, and number of embedding dimensions, Dim, and b , strongly affect the accuracy of KML 

values. A relationship between KML and b  was established, which was obeyed by experimental data from all operating 

conditions studied, and for all sampling frequencies. The chaotic dynamics of the CFB was studied by examining the 

effect of increasing the local solids concentration at different axial elevations and different operating conditions in a high 

flux riser. It was concluded that the KML method is highly accurate when N > 3,000 data points, for which the effect of 

Dim is negligible and PDFs of the b-values becomes similar in shape based on σ(b), Sk(b) and Ku(b).  

 

Keywords: Solids concentration fluctuations, accuracy of measurements, time series analysis, chaos analysis, 

Kolmogorov entropy.  

diagnostics (Hoyer et al., 1998). The analysis of 
multiphase dynamics using chaos analysis has been 
so far developed and used for analysis of pressure 
fluctuations (Manyele, et al., 2002a; 2003), solids 
concentration signals (Cheng et al., 1998), and 
temperature fluctuations. 
 
In the analysis of solids concentration signals form 
a CFB, the mean value of the signal describes what 
is measured while standard deviation and other 
statistical measures represent noise and other 
interferences. In the CFB, such interferences are 
caused by gas flow pulsations and formation and 
breakdown of clusters (Manyele et al., 2002b). 
Different from macroflow, the microflow studies 
are normally focused on quantifying the fluctuating 
component of the signal (Manyele et al., 2003); 
however, the fluctuations must be within reasonable 
range (Soong et al., 1994).  
 
During solids concentration measurements in the 
CFB, the final state is regarded to be the steady 
state condition when all flows remain constant. 
Starting signal recording some time after the 
process has started attains the conditions of 
stationarity. However, the signals must still be 
tested for stationarity before chaos analysis can be 
applied (Finney et al., 1996). The stationarity 
condition is attained when the statistical averages 

 

al., 1995

INTRODUCTION 

 
Multiphase reactors exhibit complex non-linear 
oscillations (mixed periodic and chaotic 
oscillations). Moreover, the dynamics of such 
systems exhibit both spatial complexity (different 
dynamics from one location to another) and 
sometimes temporal complexity (different 
dynamics from one time to another) (Addison, 
1997), especially due to feed variations and gas 
pulsations. This complexity has been studied using 
both one-dimensional approach (statistical and 
spectral analyses) and also a multi-dimensional 
approach using phase-space statistics (chaos 
analysis).  
 
Chaos analysis is not the only tool for the analysis 
of the complex dynamics of multi-phase reactors; 
other methods include statistical analysis and 
spectral analysis. However, statistical analysis 
(using mean, standard deviation and properties of 
the PDF) does not keep track of time-dependency 
behavior of the multiphase reactors (van der 
Stappen et al., 1993), i.e., even when the signal is 
arranged in ascending order of values, the same 
value is obtained. Chaos analysis has been used in 
the study of weather (Lorentz model), economics, 
epidemiology and ecology (Schaffer, 1985; Müller 
et ), demography, and in medical 
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(i.e. mean, standard deviation) remain constant 
along different segments of the signal or time 
series. 
 
In a CFB riser, for example, dilute and dense phase 
flow take place dominantly at the center and in the 
wall region and bottom section, respectively 
(Johnson and Johnson, 2001; Manyele et al., 
2002a). Chaos analysis has been able to distinguish 
such flows based on strong sensitivity of its 
parameters (correlation dimension and Kolmogorov 
entropy) (Bai et al., 1999; Manyele et al., 2002a; 
2003; 2006). Similarly, the axial flow structure 
along the CFB, which varies widely (entrance, 
acceleration, transition and the exit sections), have 
been identified using chaos analysis of pressure 
fluctuations and solids concentration signals from 
high density risers (Manyele et al., 2006; 2002a; 
Bai et al., 1999) and downers (Cheng et al., 1998; 
Manyele et al., 2003).  
 
The Kolmogorov entropy characterizes the 
sensitivity of the gas-solids flow to small 
disturbances and its rate of information loss; it is 
also a measure of the predictability of the changes 
in the gas-solids flow (Grassbeger and Procaccia, 
1983; Daw, 1990; 1991; 1992). Higher entropy 
signifies higher rate of information loss (or lower 
predictability) and also stronger dependency on 
small disturbances. Recently, KML have been 
extensively used to study the chaotic behavior of 
CFB risers and downers based on both solids 
concentration data (Cheng et al., 1998; Manyele et 

al., 2003; 2006).  
 
The most acceptable algorithm for computation of 
Kolmogorov entropy is the maximum likelihood 
method developed by Schoulten et al. (1994), 
denoted as KML. However, the accuracy of the data 
processing technique for determination of KML 
depends on a number of parameters such as 
sampling frequency, length of the time series, time 
average solids concentration, and number of 
embedding dimensions used in phase space 

reconstruction. This paper analyzes the effect of 
these parameters using solids concentration data 
from CFBs. After establishing the optimum values 
for these parameters, the chaotic behavior of the 
CFB was studied by examining the effect of local 
solids concentration in a high flux riser. Moreover, 
the accuracy of the measurement technique for 
solids concentration fluctuations was analyzed 
using statistical methods.  
 

EXPERIMENTAL DETAILS 

 
The signals used in this study were measured in two 
different units: (a) one of the risers of a 10-m CFB 
twin-riser system, with 76-mm i.d. operated at high 
flux, and (b) from a downer reactor 100-mm 
diameter and 9.3 m tall, operated at low flux 
conditions. The solids circulating in each of these 
systems were spent FCC catalyst with a mean 

diameter of 67 µm and a particle density of 1500 
kg/m3. Figure 1 shows the setup of the two units. 
The riser was operated at high flux conditions (Ug = 
5.5 to 10.0 m/s and Gs = 100 - 550 kg/m2s, while 
the downer was operated under dilute conditions 
(Ug = 3.7 to 10.0 m/s and Gs = 50 to 200 kg/m2s). 
The details of the two units have been reported by 
Manyele et al. (2003; 2006). 
 
Solids concentration fluctuations measurements 
were conducted using a reflective-type optical fiber 
concentration-probe for both units. The active area 
in the probe tip was approximately 2 mm x 2 mm, 
consisting of approximately 8000 emitting and 
receiving quartz fibers, each having a diameter of 

15 µm. More details of this probe including its 
calibration procedure can be found from Zhang et 

al. (1998). Measurements were taken on several 
axial levels and at several radial positions. The 
sampling time was 30 seconds at a frequency of 
970 Hz. Each stored signal consisted of 27,000 data 
points. Data analysis was conducted using 
FORTAN codes. 
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Figure 1: Experimental setup for downer and riser CFBs 
 
DETERMINATION OF KOLMOGOROV 

ENTROPY USING MAXIMUM LIKELIHOOD 

METHOD 

 
The maximum likelihood approach was proposed 
for the estimation of Kolmogorov entropy of 
experimental data, KML (Schoulten et al., 1994). 
Because the computations of the Kolmogorov 
entropy using the method of Grassberger and 
Proccaccia (1983) do not have a known standard 
error, the maximum likelihood method has gained 
acceptance in the multiphase reactor signal 
processing. However, this method needs analysis 
before it can be implemented. The accuracy of the 
computational results for KML depends on the 
following factors: the average value of b, the 
sampling frequency, the effect of the length of the 
time series used in the computation, and number of 
embedding dimensions used.  
 
This maximum likelihood method is based on the 
average number of steps before the exponential 
divergence between reconstructed trajectories 
exceeds the average absolute deviation, AAD, of the 
original time series, using a time delay of one 

sampling interval, �t, for phase space 
reconstruction, as shown in equation (1).  
 

⎟
⎠
⎞

⎜
⎝
⎛ −−=

b
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1
1ln

1

τ
 

(1) 
 

where b  is the average number of steps before the 

distance between two points exceeds the AAD or 

the crossing distance, and τ = ∆t. A positive value 
of KML is a necessary condition for a system to be 
chaotic.  
 
The average absolute deviation (AAD) is simply the 
average value of the departure of the instantaneous 
values of the solids concentration from the mean 
value (Schoulten and van den Bleek, 1998; 
Marzochella et al., 1997; van der Stappen et al., 
1993b), expressed mathematically as per equation 
(2):  

∑
=

−=
N

i

i XX
N

AAD
1

)(
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(2) 

 

where N is number of data points in the signal and 
X is the one-dimensional series of solids 
concentration values. 
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RESULTS AND DISCUSSION 

 

Accuracy of the Measurement System 

 
The accuracy of measurements was expressed in 
terms of the coefficient of variation, CV (the ratio 
of the standard deviation to the mean), and signal to 
noise ratio, SNR (the ratio of the mean value to the 
standard deviation). A plot showing CV and SNR 

versus the time-averaged solids concentration, εs, 
for a wide range of operating conditions is shown in 
Figure 2 (using data from a downer reactor). 
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Figure 2: Variation of the coefficient of variation 
(CV) and signal-to-noise ratio (SNR) with the 
average solids concentration in the downer reactor 
(sample data from the fully developed section) 
 

For εs less than 1.0%, CV increases faster reaching 

a maximum at εs ≈ 1.0%, before decreasing again as 

εs approaches 2.0%. The CV varied between 30 - 
70% showing that the mean value is always higher  

than the fluctuations. The corresponding values of 
SNR range from 750 – 1750, which are sufficiently 
higher signifying that the noise component is 
smaller. Moreover, the variation of Ug and Gs has 
no significant difference on CV and SNR. 
 

Accuracy of Skewness and Kurtosis used to 

analyze the Properties of PDFs  

 
In this study, Skewness and Kurtosis were 
employed in analyzing the properties of the PDF of 
sampled solids concentration signals and also for 
the PDF of the counted number of points in phase 
space during computation of KML. High positive 
Skewness indicates that the PDF have a long tail 
towards higher values (to the right), while the 
Kurtosis measures the tendency of the PDF to have 
a high peak. 
 
The accuracy of both Sk and Ku depend strongly on 
the number of samples used in computation, that is 
N. For the calculated values of Skewness and 
Kurtosis to be meaningful, the corresponding 
standard deviation as the estimators of both Sk and 

Ku of the underlying distribution, must be known.  
 
For the ideal case of a normal (Gaussian) 
distribution, the standard deviation of the computed 
Sk as an estimator of the Skewness is approximately 

NS Nk /15, = , which is equal to 0.024 for N = 

27,000 used in this study. The accuracy of the 
computed Skewness is high when the computed 
value is many times as large as Sk,N. To examine the 
accuracy of the computed values of Skewness of 
the sampled signals, the values are plotted versus 

the time-averaged solids concentration, εs, as shown 
in Figure 3. The horizontal dashed line indicates a 
base line for Sk,N = 0.024. The computed values of 
Skewness ranged from 1 to 10, which are clearly 
higher than 0.024, about 40 – 100 times, for all 
operating conditions. The Skewness also shows a 

maximum at εs = 1.0%, similar to CV.  
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Figure 3:  Range of values for both Skewness and Kurtosis in the downer reactor  
(sample data from the fully developed section).  

 
Based on the normal (Gaussian) distribution, again 
the standard deviation of the Kurtosis as an 
estimator of the Kurtosis of the underlying 

distribution is given by NK Nu /96, = . The same 

approach was used as for Skewness. The accuracy 
was inferred by comparing the computed values of 
Ku with the Ku,N. Figure 3 shows also the variation 

of Ku with εs for similar operating conditions. The 
Ku values range from 1 to 100 and are far higher 
than the Ku,N = 0.060. Similarly, the Kurtosis shows 

a peak as εs is increased from 0.5 to 2.0%. The 
above analysis was then used to examine the PDFs 
of the b-values created from the reconstructed 
trajectories, with N = 106. 

The effect of b  of the Reconstructed Vector on 

the KML   

Figure 4 shows the range of b-values for signal 
reconstructed using 100 embedding dimensions for 
N = 5000 data points. The determination of b-
values requires counting of points on the attractor 
before the separation distance from a given 
arbitrary stationary point exceeds AAD. Once AAD 
is exceeded, the number of points counted is 
recorded. The computer is then instructed to jump 
to another arbitrary point on the attractor and the 
counting is repeated. 
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Figure 4: Range of b-values for a solids concentration signal embedded at Dim = 100 and N = 5,000 using a 
signal from a high flux riser (Ug = 8.0 m/s; Gs = 300 kg/m2s; Z = 6.34 m and r/R = 0) 
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Using the maximum-likelihood method, several 
values of b are determined, the average of which is 
used to calculate the KML. With a large value of M, 
it is also interesting to examine the nature of the 
PDF. The sequence of values of b obtained from a 
given time series were used to study the probability 
distribution function (PDF). This was studied by 
computing the standard deviation and Skewness of 
the b-values as N changes, as shown in Figure 5. 
For N < 1,000 points, the effect of Dim is stronger 
leading to totally different shapes of PDFs for the 
b-values whenever Dim is changed, as observed 
from the wide variation in the standard deviation, 

σ(b), Skewness, Sk(b) and Kurtosis, Ku(b). 
Meanwhile, the Skewness increases with N until it 

levels off for N > 1,000. With standard deviation 
between 6.0 and 8.0 (for N > 1,000), it shows that 
the values of b are relatively similar.  
 
In the analysis of b-values, the Skewness was 
observed to range between 2.5 to 3.0 at higher N. 
Based on the accuracy analysis results from Figure 
3, the experimental values are far higher than the 
Sk,N, signifying that the computed Sk values of the 
underlying PDF of b-values is highly accurate. The 
fact that the Skewness values for the PDF of b-
values are far higher than the Sk,N for the PDF of a 
normal distribution, i.e. 0.004 for N = 106 counts, 
signifies that the computed Skewness values are of 
high accuracy. 
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Figure 5: Effect of the time series length, N, on the nature of the PDF of b-values at different Dim 
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Effect of Sampling Frequency on KML 

 
The fiber optic probe used for measurements of 
solids concentration was sampled at a frequency of 
970 Hz. With such a fast sampling software and 
hardware combination, it was possible to reduce the 
frequency from 970 to 61 Hz, and study the effect 
of the sampling frequency. However, for accuracy, 

the highest frequency is preferred because it 
captures the dynamics to the maximum possible 
state. Figure 6 shows the effect of b value on the 
range of values of KML at different sampling 
frequencies. By changing the sampling frequency 
of the signal a different loci of the KML values is 
obtained. 
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Figure 6: Variation of KML with the average b-value at different sampling frequencies for signals from a high 

flux riser (Ug = 8.0 m/s; Gs = 300 kg/m2s; Z = 6.34 m and r/R = 0) 
 
Figure 6 shows that the higher the frequency the 
higher the KML value. Thus, the same system 
sampled at a lower frequency will lead to lower 
values of KML and vice versa. However, because the 
locus gives a straight line on a log-log plot, the 
profiles in the CFB will be the same if the same 
equations are used. Figure 6 shows also that the 
higher the average value of b the lower the KML 

value. This is in accordance to the fact that since b  

gives the number of steps before the distance on the 

attractor exceeds AAD, then, lower value of b  

implies that the attractor is more sparsely populated 
by vector points, or the points are far apart, an 
indication of a large phase space, and that only a 
few points are encountered, before AAD is 
exceeded, implying a higher value of KML.  
 

Figure 7 shows the variation of KML with b for 

signals sampled from the high flux riser t different 
operating conditions. A log-log plot gives a straight 
line for all conditions, which was fitted by a 
relationship: 
 

033.1−∝ bKML  
(3) 

 
For all operating conditions studied, the 
relationship presented in equation (3) was observed. 
The experimental data follows this relationship for 
dilute and high density conditions, as Gs was 
changed from 100 to 550 kg/m2s under the same 
gas velocity (8.0 m/s). Also, the change in velocity 
from 5.5 to 10.0 m/s at constant Gs of 300 kg/m2s 
did not affect the relationship. As shown in Figure 
6, a similar relationship will be obtained for all 
sampling frequencies.  
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Figure 7:  Variation of KML with b for different operating conditions in a high flux riser in the fully 
developed section 

 
The effect of Time Series Length on the Actual 

value and Accuracy of KML 

 
The length of the time series used in phase space 
reconstruction is determined by computation speed 
of the computer. To minimize the computation 
time, optimization can be done on the computer 
code or by changing the length of the time series, 
N. Figure 8 shows the semi-log plot of the variation 
of KML with N (200 – 27,000) for a wide range of 
embedding dimensions (Dim = 5 – 200) for a signal 
from a high-density riser. 
For N < 1000 points, the KML varies widely with N 
without a clear pattern. However, for N > 1,000 
points, all the values follow a single curve for all 
Dim. This shows that: 
(a) The effect of Dim is strong for shorter time 

series than 1,000 pints. 

(b) The accuracy and repeatability of KML values 
is higher for longer time series.  

(c) For longer time series, any number of 
embedding dimensions will lead to the same 
range of KML values. 

 
Schoulten et al. (1994) proposed the standard error 
for the computed values of KML to be M-0.5, where M 
is the number of times the distances exceed the 
average absolute deviation of the signal (number of 
crossings, which is equal to the number of b-
values). In this study, the optimization of the 
computation time was based on N for which the 
accuracy is reported as the former increases. 
Parallel to the computation of KML, the standard 
error values were also estimated. Figure 9 shows 
the log-log plot of the variation of the standard 
error of KML with the length of the time series used 
for the phase space reconstruction. 
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Figure 8:  Effect of the time-series length on the KML values and the corresponding accuracy (based on the 
standard error values, signal from a high-density riser) 

 
Below N = 3,000, the standard error in the estimate 
of KML is higher and decreases until N = 3,000, 
beyond which it remains constant at about 0.001. 
The same values of the standard error were 
obtained regardless of the number of embedding 
dimension. However, because s(KML) decreases for 
lower values of N, the best range of time series 
length is N > 3,000 points for higher accuracy. 
However, the number of embedding dimensions has 
no effect on the standard error. Therefore, to 
minimize computer time, a smaller Dim = 5 and N 

slightly above 3,000 can be used to estimate KML 
values. 
 
It is important to determine the relative standard 
error of the KML (entropy estimate), s(KML). It is 

suggested that s(KML) ≤ 0.1%, i.e., KML values 
should be based on at least a sample size the order 
of 106 values of b. This counting is performed for a 
large number of times, about 106. The possibility of 
having such higher number of b values is based on 
the fact that the embedding dimensions leads to a 
length of the embedded signal of length = (N)Dim.  
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Figure 9: Effect of the time-series length on the accuracy of KML values (based on the standard error values), 
signal from a high-density riser 

 
A semi-log plot of M-0.5 versus KML is given in 
Figure 10. In this case, the number of data points 
was fixed, and then several values of KML were 

determined for each signal, from which the values 
of M (i.e. the number of crossings or the number of 
b values) were also computed. Throughout the 
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downer, the values of M-0.5 ranged only between 
0.10% and 0.25% for all operating conditions. This 
range is sufficiently small for experimental signals. 
Moreover, the higher KML were determined at 
higher accuracy than the lower values. Compared to 

Figure 6, it implies that higher sampling 
frequencies from multiphase reactors lead to higher 
KML values and also to higher accuracy in the 
computation of KML.  
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Figure 10: Standard error for the estimated values of entropy, s(KML), for signals from downer reactor 

operated at different gas velocities 

 
The Effect of Jump-length for restarting a cont 

of b-values on a reconstructed vector 

 
The number of points to be jumped, Jm, while 
looking for an arbitrary point to re-start counting 
the value of b, was not specified by Schoulten et al. 
(1994). How Jm affects KML, b and the standard 
error for estimation of KML is subject to analysis for 
experimental data, which has not been done using 
experimental data from multiphase reactors. Figure 
11 shows the effect of increasing Jm on KML for 
different number of embedding dimensions, Dim. 
 

The effect of Jm on KML strongly depends on the 
number of embedding dimensions, Dim. At higher 
Dim, lower values of KML were observed. Thus, 
changing Jm changes the value of KML. For 
experimental data from multiphase reactors, it is 
recommended to fix the value of Jm throughout the 
analysis, preferably in the range of 150 - 350, when 
the KML curves become closer to each other. Further 

analysis revealed that Jm have no effect on b , 

standard deviation, σ(b), Skewness, Sk(b), and 
Kurtosis Ku(b), even when Dim was changed from 5 
to 200. 
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Figure 11: The effect of changing Jm on KML 
 
Analysis of the Chaotic Behavior of the CFB 

using KML 

 
After setting all the computational parameters to the 
optimum values (N, f, and Jm), according to the 
results of this analysis, the chaotic analysis of the 
CFB was investigated, based on the radial profiles, 
axial profiles and the effect of local solids 
concentration at different operating conditions. 

Figure 12 shows the effect of increasing εs on both 
KML in the fully developed-flow section (Z = 6.34) 
for a wide range of operating conditions in a high 
flux riser. 
 

Increasing εs generally lowers KML for all operating 
conditions. Similar observation can be deduced 
from Figure 12, when Gs is increased from 300 to 
550 kg/m2s at constant gas velocity of 8.0 m/s. 
However, at constant Gs, the variation of KML with 
Ug is not clear. Using pressure fluctuations, 
Manyele et al. (2002a) reported the decrease of KML 
with Gs at constant Ug and also a decrease of KML as 
the apparent solids concentration were increased for 
all operating conditions. However, the effect of Ug 
was not elucidated.  
 

The decrease in KML as Gs or εs is increased can be 
attributed to the increased cluster existence time  

and a decrease in cluster frequency at higher εs 
(Manyele et al., 2002; Soong et al., 1995; 1994) 

leading to extended time scales for changes in εs 
with time, such that the time scales predicted by 
KML becomes longer and hence lower KML values 
are observed. Longer time scales in the signal imply 
higher b-values and hence lower KML. On the 
reconstructed attractor, the number of points 
counted before the separation distance exceeds 
AAD becomes higher. In other words, the gas-solids 
flow stays longer in one dynamic state before it 
changes into another. Such a system is said to be 
easily predictable (relatively), attains low rate of 
information loss and it looses sensitivity to the 
disturbances. 
 

The effect of increasing εs on KML was also studied 
at different axial elevations in a high flux riser. 

Figure 13 shows the variation of KML with εs at 
different axial elevations. Along the axial direction, 
the time scales are different due to several factors. 
At the bottom, due to the distributor effect (strong 
gas jets) and solids recirculation, KML is higher even 

at higher εs, as shown in Figure 13, which is in 
accordance to the fact that faster changes take place 
in the gas-solids flow in this section. In such a 
section the gas-solids flow is not easily predictable. 
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Figure 12: Variation of Kolmogorov entropy with 
local time-averaged solids concentration in the fully 
developed section of a high flux riser (Z = 6.34 m) 
 
In the fully developed section, Z = 6.34 and 8.74 m, 
there is minimal wall effect, no solids acceleration, 
such that the time scales are longer than in the 
bottom. This leads to longer average cycle times 
(Manyele et al., 2002b) and hence lower KML 

values at comparable values of εs. 
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Figure 13: Variation of Kolmogorov entropy with 
local time-averaged solids 

concentration in different sections of a 
high flux riser  

 

CONCLUSIONS 

 

It can be concluded from this study that: 

 

1) The measurements of solids concentration 
using a fiber optic probe are highly accurate 
with SNR of about 750 to 2000 and CV 
ranging from 30 to 80%. 

2) The Skewness and Kurtosis of the solids 
concentration signals revealed that the 
properties of the PDF are accurately 
determined for the signals sampled at a 
frequency of 970 Hz and a duration of 30 
seconds, which gives N = 27,000, and Sk,N 
and Ku,N well above 0.024 and 0.060, 
respectively, for a normal distribution. 

3) The Skewness and Kurtosis of b-values 
ranged between 2.0 to 3.0 and 8.0 to 11.0, 
respectively, being well above the Sk,N and 
Ku,N for a normal distribution (using N = 106). 

4) The KML is strongly affected by the sampling 
frequency of the signal from the multiphase 
reactor, which leads to different values 
reported in the literature for CFBs. Higher 
frequency leads to higher values of KML and 
vice versa.  

5) The values of KML strongly depend on the 
length of the time series, N. For N< 1,000 
points, the KML values depends strongly on 
the number of embedding dimension, Dim, 
while the latter was observed to have no 
effect for N > 1,000 points. 

6) The standard error, s(KML), decreases to a 
constant minimum at 0.001, for N > 3,000 
points. The effect of Dim is negligible on the 
s(KML). Higher values of KML are accurately 
determined than lower values, whereby 
s(KML) decreases with increasing KML value. 

7) The KML decreases with increasing time-
averaged solids concentration in the riser, due 
to corresponding longer time scales at higher 

εs. This was observed for all operating 
conditions and for all axial elevations. 

8) The KML is a powerful tool for studying the 
dynamics of CFB reactors using chaos 
analysis. It can be used accurately for N > 
3,000 data points. Higher values of N will 
lead to longer computations time. 
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NOMENCLATURE 

AAD  Average absolute deviation (-) 
b  number of steps before the separation 

distance exceeds AAD 
CV  Coefficient of variation (%) 
Dim  Number of embedding dimensions (-) 
f  Sampling frequency (Hz) 
Gs  Solids flux (kg/m2s) 
Jm  Number of points jumped to start a new 

 counting of b values (-) 
KML   Kolmogorov entropy determined by 

 maximum likelihood method, (bits/s). 
Ku  Kurtosis (-) 
Ku,N  Kurtosis of a normal distribution 
M  Number of b-values 
N  Number of data points of original times 

 series used for reconstruction of 
 multidimensional vector (-) 

s(KML) Standard error of the computed KML  
Sk  Skewness (-) 
Sk,N  Skewness of a normal distribution (-) 
SNR  Signal-to-noise ratio (-) 
Ug  Superficial gas velocity (m/s) 
 

Greek letters 

εs  Time –averaged solids concentration (%) 

∆t  Sampling time interval (s) 
 

REFERENCES 

 

Addison, P.S., (1997), “Fractals and Chaos: An 
Illustrated Course”, Institute of Physics 
Publishing (IOP) Ltd., Bristol, pp. 117-190. 

 

Bai, D., Issangya, A.S., and Grace, J.R., (1999), 
“Characteristics of Gas-Fluidized Beds in 
Different Flow Regimes”, Ind. Eng. Chem. 

Res., 38, 803-811. 
 

Cheng, Y.; Wei, F.; Lin, Q.; Jin, Y. A., (1998), 
Comparison of Local Chaotic Behaviors in 
a Riser and a Downer. In Fluidization IX. 
Fan, L.-S.; Knowlton, T.M., Eds.; 
Engineering Foundation, NY, , pp 613-620. 

 

Daw, C.S., and Halow, J.S., (1991), 
“Characterization of Voidage and Pressure 
Signals from Fluidized Beds Using 
Deterministic Chaos Theory”, Proc. of 11th 
Fluidized Bed Combustion (Ed. E.J. 
Anthony), ASME, Vol. 2, 777-786. 

 

Daw, C.S., and Halow, J.S., (1992), “Modeling 
Deterministic Chaos in Gas Fluidized 
Beds”, AIChE Symp. Ser. 88 (289), 61-69. 

 

Daw, C.S., Lawkins, W.F., Downing D.J., and 

Clapp, Jr., N.E., (1990), “Chaotic 
Characteristics of a Complex Gas –Solids 
Flow”, Phys. Rev. A, 41(2), 1179-1181. 

 

Finney, C.E.A, Kennel, M.B., Daw, C.S., and 

Halow, J.S., (1996), “Non-Linear Time 
Series Diagnostics of Fluidization Quality”, 
AIChE Annual Meeting, Paper 188C, 
November 14, 

  
Fuller, T.A., Flynn, T.J., and Daw, C.S., (1996), 

“Analysis of Dynamic Boiler 
Measurements: A Practical Approach”, 
Chem. Eng. J., 64, 179-189. 

 
Grasberger, P., and Procaccia, I., (1983), 

“Estimation of the Kolmogorov Entropy 
from a Strange Signal”, Physcal Review, 
A28, 2591-2594. 

 

Hegger, R., Kantz, H. and Screiber, T., (1999), 
“Practical Implementation of Nonlinear 
Time Series Methods: The TISEAN 
Package, Chaos, 9, 413. 

 

Hoyer, D., Bauer, R., Walter B., and Zwiener, 

U., (1998), “Estimation of Nonlinear 
Couplings on the Basis of Complexity and 
Predictability – A New Method Applied to 
Cardiotherapy Coordination”, IEE 

Transactions on Biomedical Engineering, 
45(5), 545-552  

 

Johnson, H., and Johnson, F., (2001), 
“Measurement of Local Solids Volume 
Fraction in Fluidized Bed Boilers”, Powder 

Technol., 115, 13-26. 
 

Manyele, S.V., Pärssinen J., and Zhu, J.-X., 

(2002b), “Characterizing Particle Aggregates 
in a Riser Operated at High Solids Flux”, 
Chemical Engineering J., 88, 151-161. 

 

Manyele, S.V., Zhu, J.-X, Khayat, R.E., and 

Pärssinen, J., (2006), “Analysis of the 
Chaotic Dynamics of a High-Flux CFB Riser 
using Solids Concentration”, China 

Particuology, Vol. 88 Nos. 3-4, 136-146  
 

Manyele, S.V., Zhu, J.-X., and Zhang, H., 
“Analysis of the Microscopic Flow Structure 
of a CFB Downer Reactor Using Solids 
Concentration Signal”, International Journal 

of Chemical Reactor Engineering, Volume 1, 

34 Tanzania Journal of Engineering and Technology, (TJET) Vol. 31 (No.1), June, 2008



Accuracy analysis for Kolmogorov Entropy used in studying the chaotic dynamics of CFB reactors based on solids 
concentration fluctuations 

 
Article A55, Produced by The Berkeley 

Electronic Press, 2003, pp. 1-17,  
 

Manyele, S.V., Khayat, R.E., and Zhu. J., 

(2002a), “Investigation of the Dynamics of a 
High-flux CFB Riser Using Chaos Analysis 
of Pressure Fluctuations”. Chem. Eng. 

Technology, 25, 1-10.  
 

Marzochella, A., Zijeveld, R.C., Schoulten, J.C., 

and van den Bleek, C.M., (1997), 
“Chaotic Behaviour of Gas-Solid Flow in 
the Riser of a Laboratory-Scale Circulating 
Fluidized Bed”, AIChE J., 43, 1458-1468. 

 

Müuller, U.A., Dacorogna, M.M., Davé, R.D., 

Pictet, O.V., Olsen, R.B., and Ward, 

J.R., (1995), “Fractals and Intrinsic Time-
A Challenge to Econometricians”, 34th In. 
Conf. of Applied Econometrics Association 
(AEA), Luxenbourg, 14-15 October, 1995.  

 

Schaffer, W.M., (1985), “Can Nonlinear Dynamics 
Elucidate Mechanisms in Ecology and 
Epidermiology?”, IMA J. Math. Applied in 

Medicine & Biology, 2, 221-252. 
 

Schoulten , J.C., and van den Bleek, C.M., 

(1998), “Monitoring the Quality of 
Fluidization Using the Short-term 
Predictability of Pressure Fluctuations”, 
AIChE J., 44(1), 48-60.  

 

Schoulten, J.C., Takens F., and van den Bleek, 

C.M., (1994) “Maximum Likelihood 
Estimation of the Entropy of an Attractor”, 
Physical Review E, 49(1), 126-129. 

 

Soong, C. H., Tuzla, K., and Chen, J.C., (1994), 
"Identification of Particle Clusters in 
Circulating Fluidized Bed", in “Circulating  

 Fluidized Bed Technology IV”, A. A. 
Avidan, (Ed.), AIChE, New York, pp. 615-
620. 

 

Soong, C. H., Tuzla, K., and Chen, J.C., (1995), 
“Experimental Determination of Cluster 
Size and Velocity in Circulating Fluidized 
Bed”, in “Fluidization VIII”, J-F. Large and 
C. Laguerie (eds.), Engineering 

Foundation, New York, pp. 219-227. 
 

van der Stappen M.L.M., Schoulten, J.C., and 

van den Bleek, C.M., (1993a), 
“Application of Deterministic Chaos 
Theory in Understanding the Fluid 
Dynamic Behavior of Gas-Solids 
Fluidization”, AIChE Symposium Series, 89 

(296), 91-102. 
 

van der Stappen, M.L.M., Schoulten, J.C., and 

van den Bleek, C.M., (1993b), 
“Applications of Deterministic Chaos 
Analysis to Pressure Fluctuations 
Measurements in a 0.96-m2 CFB Riser”, 
CFB IV Conference, pp. 55-60. 

 

Zhang, H., Johnson, P.M., Zhu, J.-X., de Lasa, 
H.I., and Bergougnou, M.A., (1998). “A 
Novel Calibration Procedure for an Optical 
Fiber Concentration Probe”, Powder 

Technol., 100, 260-272. 
 
 

Tanzania Journal of Engineering and Technology, (TJET) Vol. 31 (No.1), June, 2008  35 

 


