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ABSTRACT 

Engine design optimisation is a multi-objective, multi-domain problem in a discontinuous design space. The state of the 

art of optimisation techniques shows that only methods of direct and adaptive search are appropriate for this type of 

problem. These include, adaptive random search, simulated annealing, evolution strategies and genetic algorithms. Of 

these methods, the genetic algorithms have been shown to be the most suited for the optimisation of multi-modal response 

functions in a discontinuous design space. This paper considers the important characteristics of genetic algorithms and 

their adaptation for use in parametric design optimisation of internal combustion engines. In order to verify the basic 

functionality of the proposed optimisation strategy, a genetic algorithm based, optimisation software was developed and 

tested on a number of analytical functions, selected from optimisation literature, with satisfactory results.    
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1.0  INTRODUCTION 

 
The search for optimal design modifications of 
engines to meet increasingly tighter performance 
specifications with respect to emissions is 
becoming increasingly important. In order to 
reduce the time and cost associated with empirical 
testing, predictive techniques of varying degree of 
sophistication have been advanced. Using these 
techniques, engine structures can be 
conceptualized into mathematical models, analysed 
and subsequently modified after examination of the 
analysis results. The modified structure is then re-
analysed, the analysis examined, and the structure 
modified again, and so on, until a satisfactory 
response is achieved. In order to perform the 
modifications in one step, finite element based 
optimisation strategies that make use of gradient 
based iterative optimisation algorithms have been 
attempted. To locate global optima, these methods 
rely on the smoothness of the objective function 
and the existence of derivatives. However, engine 
noise is a multimodal and noisy function, with 
many sharp discontinuities, and gradient based 
methods suffer from the difficulty to distinguish 
between a local minimum and global optimum 
values (Zhang, 1992; McCulloch, 1996). 
Furthermore, for dynamically oriented functions 
like engine noise, the gradient information is not 
easy to evaluate (Zhang, 1992). Moreover, most of 
the optimisation schemes reported in the literature 
have dealt with the problem of minimisation of 
radiated noise while meeting engine weight 
constraint. This has been achieved by employing 
single objective constrained optimisation 
algorithms. However, experience has shown that 

reducing noise levels tends to increase weight, thus 
creating a conflict. Moreover, strategies to meet 
other requirements are usually in conflict with the 
low noise objective. Therefore, the minimisation of 
radiated noise cannot be considered in isolation, 
and a suitable optimisation tool must be able to 
take into account all the conflicting product 
objectives simultaneously. This calls for the 
development of suitable constrained multi-
objective optimisation algorithms. The traditional 
gradient based optimisation techniques, limited by 
function smoothness and continuity requirement, 
are not suitable for this class of problems.  

2.0 OVERVIEW OF CANDIDATE SEARCH 

STRATEGIES 

 
The limitations of the traditional gradient based 
search strategies for design optimisation of internal 
combustion engines have been presented in the 
introduction. An alternative to gradient based 
methods is the enumerative schemes. Given a finite 
search space, the algorithm starts to search on the 
objective function values at every point in the 
space, one at a time. However, many practical 
spaces are simply too large to search one point at a 
time. Even the best known enumerative scheme 
‘dynamic programming’ breaks down on problems 
of moderate size and complexity (Bellman, 1961). 
In the current application where the necessary 
number of evaluations of the objective function to 
reach the optima poses a major constraint in view 
of CPU resource requirement and job completion 
time, enumerative schemes are certainly inefficient 
and therefore not suitable. 
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Random search algorithms such as ‘simulated 
annealing’ have achieved increasing popularity, 
(see for example, Kirkpatrick et al, 1983; Cermy, 
1985; Ali and Stoney 1996; DeVicente et al, 2003). 
Ali and Stoney (1996) reports of modifications to 
the basic algorithm to incorporate strategic 
decision rules based on knowledge of the global 
structure of the problem, and a learning procedure 
to make effective use of information gained in the 
previous iterations. Various hybrid schemes 
incorporating gradient based search and simulated 
annealing have also been suggested (Semenkin and 
Semenkina, 1996; Das and Chakrabati, 2005). 
However random schemes that search and save the 
best they can be expected to do is no better than 
enumerative schemes in the long run. They are 
therefore discarded for this task on grounds of 
inefficiency. 
 
Developments in computational models of 
evolutionary processes have led to the realisation of 
powerful, robust and general search and adaptive 
schemes collectively known as evolutionary 
algorithms. These include the genetic algorithms 
(Goldberg, 1989; Mitchell, 1996; Schmitt, 2001; 
Goldberg, 2002; Bies et al, 2006), evolutionary 
programming (Fogel, 1994, 1998, 2006; Eiben and 
Smith, 2003), evolution strategies (Schwefel, 1995; 
Beyer, 2001; Beyer and Schwefel, 2002), and 
genetic programming (Koza, 1992, 1994; Langdo 
and Poli, 2002; Koza et al, 2003; Poli et al, 2008). 
In evolutionary algorithms, a population of 
individuals is assessed and the individuals are 
assigned fitness values on the basis of their 
performance. The fitter ones are then 
probabilistically selected and used to breed the next 
generation of individuals. Variation is introduced 
by random mutation of part of some representative 
heritable component (the genotype) and crossover 
between parental genotypes. Over successive 
generations, the characteristics of the individuals 
evolve to resemble those which best satisfies the 
optimisation requirements. Because they are 
population based and exploit historical information 
to speculate on new search points, they are less 
troubled by the local minima problems. Analysis of 
evolutionary algorithms show that genetic 
algorithms (GAs) are probably the most suited for 
the current application. Mardle and Pasoe (1996) 
give an overview of genetic algorithms for the 
solution of optimisation problems. Masatoshi 
(2001) presents genetic algorithms for solving 
multi-objective optimisation problems, with 
applications in operations planning. Wu and Sage 
(2006) applied a genetic algorithm based 
optimisation model to simultaneously quantify and 

locate water losses from distribution networks via 
the process of hydraulic model calibration. The 
advantages of genetic algorithms are essentially on 
their flexibility, efficiency and ability to handle 
complex trade-offs and badly behaved functions.  
 
THEORETICAL DEVELOPMENT 

 

3.1  The Simple Genetic Algorithm 

Goldberg (1989) has described a simple genetic 
algorithm that yields good results in many practical 
problems. It is composed of three basic operators 
namely, reproduction (or selection based on 
fitness), crossover, and mutation.  
 
3.1.1  Reproduction (or Selection) 

Initially, individuals are generated by randomly 
selecting settings for each parameter in a coded 
form. Thus, for a parameter coded as a binary string 
of length L, an individual can be generated by 
simulating flipping of a fair coin L times, resulting 
in a string represented by, 
 
A = aL aL-1 . . . . . a2a1   (1) 
 
where each ai represents a binary feature or 
detector, having a value of 1 or 0. The strings are 
analogous to chromosomes in biological systems. 
Binary coding offers maximum number of 
schemata per bit of information than any other 
coding (Goldberg, 1989), hence its use has become 
popular. String A can be decoded into an unsigned 
integer x, given by: 
 

[ ]∑
1=

1 20∈   2 = 

L

i

Li
i ,x;.ax   (2) 

 
By mapping the unsigned integers linearly from 
[0,2L] to a specified interval, [Umin, Umax], the range 
and resolution of the decision variables can be 
carefully controlled. The resolution of this mapped 
coding can be calculated as: 
 

1 -2

  - 
=

L
minmax UU

δ    (3) 

A multi-parameter problem can be coded by simply 
concatenating as many single parameter codes as 
required. Response F is then predicted for each 
member of the population. In GA terminology, the 
function F is called ‘fitness’ function. The fitness 
function may be viewed as some measure of 
goodness that we want to maximize. Therefore, it is 
often necessary to transform the underlying natural 
objective function to a fitness function form. When 
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the optimization problem is stated in minimization 
form, the following transformation is used: 
 

   
otherwise          0         

)(   when )()( maxmax*

⎪⎩

⎪
⎨
⎧ <−=

−−
−

CxFxFCxF
(4) 

The coefficient Cmax may be chosen in a variety of 
ways. In this implementation it is chosen as the 
largest value in the current population.  For 
example, the engine noise optimization problem is 
naturally stated in the form of minimization of the 
cost function. The associated cost function is sound 
power level. To transform it to fitness 
maximization problem required in GA, equation 
(4) is used.  
 
The coefficient Cmax is chosen as the maximum 
sound level of the current population. By using this 
transformation, individuals with low noise 
radiation will have a higher fitness value and 
therefore contribute more samples to the next 
generation. When the optimization is naturally 
stated in maximization form, there is no difficulty 
with the direction of the function. However, 
problems may arise with negative objective 
function values. In this case the objective function 
is transformed to fitness form as: 
 

   
otherwise                  0         

0)(       when)()( minmin*

⎪⎩

⎪
⎨
⎧ >−−=

−−
−
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 (5) 

 
The individuals are then assigned selection 
probabilities according toheir fitness. The fittest 
individuals are then copied according to their 
fitness values in a process known as selection. 
Copying strings according to their fitness values 
means that strings with a higher value of fitness 

have a higher probability of contributing one or 
more offspring in the next generation. 
 
At the start of a GA run, it is usually common to 
have a few extraordinary individuals in a 
population of mediocre colleagues. Without 
introducing some form of regulatory mechanism, 
the few super-individuals tend to dominate the 
selection process earlier on during the search. This 
leads to premature convergence and is undesirable. 
In such circumstances, fitness values must be 
scaled back to prevent take-over of the population 
by these super strings. Competition among the 
members of the population is controlled by scaling. 
The commonly used scaling are linear scaling, 
sigma truncation and power law scaling. In this 
implementation, linear scaling, which uses linear 
relationship between the scaled fitness Fs

* and the 
raw fitness F*, was employed. Linear scaling, 
shown in equation (6), is easier to implement. 
 
  Fs

* = aF* + b  (6) 
 
3.1.2  Crossover 

After selection, members of the newly reproduced 
strings are mated at random. An integer position k 
along the string is selected uniformly at random 
between 1 and the string length less one (1, L-1). 
This can be accomplished, for example, using a 
random number generator, which returns an integer 
between specified lower and upper limits. Two 
new strings are then created by swapping all 
characters between position k and L inclusively in 
an operation known as ‘crossover’ as illustrated 
schematically in Fig. 1. 

 

  Fig.1: Schematic of simple crossover (from Goldberg, 1989) 
 
3.1.3  Mutation 

Even though selection and crossover effectively 
search and recombine extant notions, occasionally 
they may become overzealous and lose some 
potentially useful genetic material (1’s or 0’s at 

particular locations). In artificial genetic 
operations, the mutation operator is introduced to 
provide against such an irrecoverable loss. 
Mutation is implemented through occasional 
random alteration of the value of a string position, 
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for example from 1 to 0 and vice versa in a binary 
coded parameter space. Selection, crossover and 
mutation, results in a new ‘generation’. This is a 
population made up of newly created individuals. 
Over successive generations, the characteristics of 

the individual tend to converge to the solution that 
best satisfies the fitness criteria. The basic genetic 
algorithm may be illustrated by the flow diagram 
depicted as Fig. 2. 

 

    Fig. 2: The basic genetic algorithm 

 
3.1.4   Application of Constraints 

The parametric optimization of engine design for 
best performance has to be carried out within the 
bounds of the applied constraints. For example,  
 

 
noise radiated from the engine structure has to be 
minimized subject to a limit imposed on engine 
weight. These limits could be specific to variables 
and/or responses. Constraints on variables can be 
implemented in the form of a ‘range’ or ‘target’ 
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constraints. Responses treated as objectives can 
either be maximized or minimized. Therefore, the 
general design optimization problem can be stated 
as a non linear mathematical programming as 
follows: 
 

Optimize f.....n 1,m      )( =XFm        

 (Objective Functions)       (7) 
 

Subject to:   g.....n 1,j      0)( =≤Xg i  

 (Inequality Constraints)       (8) 
 

 k.....n 1,k      0)( ==Xhk        

(Equality Constraints)      (9) 
    

 q.....n 1,i   +=≤≤ U

ii

L

ii xxx       

(Bounds)       (10) 
 

Where  { }  ,.....,,,..... 11 qnnn xxxxX ++=
 (Design Variables) 
   

 nxx .....1     (Set of discrete variables) 

qnn xx ++ .....1   

(Set of continuous variables) 
 
The constrained optimization problem is 
transformed into unconstrained form by introducing 
a penalty function, Ф, to each objective function for 
all constraint violations, as follows: 
 
Optimize 

{ } f

1

i .....n 1,m    )(r)( =Φ×±∑
=

n

i

im XvXF    (11) 

 
The penalty function is calculated as a function of 
the square of the constraint violation vi for all 
violated constraints i, thus; 

{ } )()( 2 XvXv ii =Φ    (12) 

 
3.2  Multi-objective Optimization  
 
In parametric optimization of engine design, 
several, usually conflicting, optimization criteria 
are present simultaneously. This represents a multi-
objective optimization problem. In this section we 
present some methods which may be used to deal 
with this kind of problem. The simplest and 
traditional way of dealing with this kind of situation 
is to introduce weighting factor for each function 
and to set the values of these factors so that each 
objective has an appropriate relative importance. 

However, assigning meaningful factors requires a 
good understanding of the interaction of the 
different objectives. It is often the case that these 
factors have to be varied by the user until the 
desired results are achieved. Because each 
optimization can take a considerable amount of 
time, it is essential that the desired requirements are 
achieved at the first attempt. Therefore despite the 
simplicity, the use of weighting factors is in most 
cases not practical. 
 
The first GA based practical scheme for solving 
multi-objective problems was developed by 
Schaffer (1985) in his Vector Evaluated Genetic 
Algorithm (VEGA). Schaffer created equally sized 
sub-populations for selection along each of the 
criteria components in the evaluation vector. In this 
scheme, selection was performed independently for 
each criterion. However, mating and crossover was 
performed across sub-population boundaries. 
Despite its simplicity, tests showed a tendency for 
bias against middling individuals, i.e. points that 
are good but not excellent along any criterion. In 
trying to overcome this difficulty, he developed 
several heuristics, including a wealth redistribution 
scheme and a crossbreeding plan, but ended up 
settling for the bare independent selection scheme.   
 
An alternative approach which is less inclined to 
bias is to treat each objective function term 
separately using the concept of Pareto optimality. 
This scheme uses a sorting procedure to produce a 
table of Pareto optimal or non-dominated solutions. 
A parameter set X with objective functions F(X) = 
[F1(X) . . . Fnf(X)], where nf is the number of 
objectives is said to be Pareto optimal or non-
dominated solution if no other parameter set Y 
exists such that Fi(Y’) is better or equal to Fi(X) for 
all i = 1, …..nf. If we accept the rationale of Pareto 
optimality, then all non-dominated individuals in 
the population must have the same reproduction 
potential. By applying a non-dominated sorting 
procedure, the population can be ranked according 
to non-domination. In this procedure, all non-
dominated individuals in the current population are 
identified. These are placed at the top of the list and 
assigned a rank of 1. These individuals are then 
removed from the contention and the next set of 
non-dominated individuals identified and assigned 
rank 2. This process continues until the entire 
population is ranked. Thereafter, fitness or selection 
probabilities are assigned according to rank. The 
rank to fitness transformation can be done in a 
number of ways. In this study, the following rank to 
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fitness transformation has been found to give good 
results: 
 

)1/1(* −= ir

i eF    (13) 

 
where Fi

* is fitness of individual i and ri is its rank. 
The fitness values obtained may be further scaled 
as described previously, to ensure an appropriate 
level of competition necessary for improvement. 
For a large population, the list of identified Pareto 
optimal solutions can be very long. A means of 
further ranking the Pareto optimal solutions 
according to their relative quality is certainly 
desirable. Two possible schemes for ranking are 
proposed. 
 
3.2.1   Solution Ranking Based on the Distance 

from a Utopian Solution   

 
This scheme involves ranking the Pareto optimal 
solutions according to their closeness to the best 
value of each objective function identified during 
the run. These best values are used to represent the 
‘ideal best case’ or ‘utopian solution’. Closeness to 
the utopian is defined in terms of normalized 
distance of the objective values calculated as 
follows: 
 

2

1 minmax

bestj∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
=

k

j pjpj

pjpi

i
FF

FF
D ( i =1,..nf )   (14) 

 
where k is the number of objective functions, nf is 
the number of Pareto optimal solutions, Fpjmax and 
Fpjmin are maximum and minimum penalized values 
of objective function j, and Fpjbest is the penalized 
value of the objective function j in the population, 
Fpij is the penalized value of objective function j 
with Pareto optimal solution i.  
 
A similar scheme to that proposed in equation (14) 
has been used by Donne and Tilley (1995), to 
decide which individuals should die during the 
process of migration between different sub-
populations in their implementation of a multi-
objective parallel GA for the optimization of fluid 
power circuits. 
 
3.2.2  Solution Ranking Based on the Concept 

of Desirability  

 
The concept desirability scheme (Derringer and 
Suich, 1980) is based on the use of an objective 
function D(X), called the desirability function, 
which reflects the desirable range of each response, 
and allows weights to be applied according to 

perceived degree of importance of achieving the 
optimization goal. It works on a 0 to 1 ranking 
scheme, where 0 is least desirable and 1 is most 
desirable. The desirability of a solution i with 
respect to response j is defined using the following 
response to desirability transformation relations. 
For a ‘maximization’ and ‘greater than’ constraint, 
the desirability is defined as: 
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For a ‘minimization’ or ‘less than’ constraint, the 
desirability is defined as: 
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For a ‘target’ constraint, the desirability is defined 
as: 
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For a ‘range’ constraint, the desirability is defined 
as: 
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where w in equations (15) - (17) is a weighting 
factor and F is the value of the response function. 
Pareto optimal solutions are discriminated on the 
basis of their desirability Di, which is calculated as 
a geometrical mean of the desirability of all 
responses, thus: 
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If the concept of desirability is extended to the 
mapping of objectives to fitness form, it provides a 
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basis for an alternative parent selection method, 
which allows the use of ‘target’ and ‘range’ 
objectives. Weight w gives added/reduced 
emphasis to an optimization goal according to the 
perceived degree of importance. With a weight of 1 
the desirability dij will vary from 0 to 1 in a linear 
fashion. Weight greater than 1 gives more emphasis 
to meeting the goal. Weight less than 1 (minimum 
is 0.1) gives less emphasis to meeting the goal.  
 

4.0   VALIDATION OF THE PROPOSED 

OPTIMIZATION STRATEGY ON 

ANALYTICAL FUNCTIONS    

 
The optimization methods and concepts described 
in Section 3 have been integrated in a software 
system PTL OPTIMA. In order to verify its 
functionality, the developed genetic algorithm 
based optimization software was tested on four 
analytical test functions selected from optimization 
literature. The description of the test functions and 
test results obtained are summarized in this section. 
A more detailed description is given by Nyonyi 
(2002). 

4.1   Description of the Analytical Test 

Functions  

 
The first two functions, F1 and F2, represent 
problems in function minimization and have been 
selected from the De Jong function test bed 
described in Goldberg (1989). The third function, 
F3, represents a simple multi-objective optimization 
problem drawn from multi-objective optimization 
literature (Vincent and Grantham, 1981; Goldberg, 
1989). This problem is represented by a two-valued 
function of a single parameter x. Notations F31 and 
F32 are used for the first and the second value 
respectively. The aim is to minimize both F31 and 
F32. The fourth function, F4, is a constrained multi-
objective problem suggested by Roy and Willenius 
(1992). This is a two valued function, F41 and F42, 
of two parameters x1 and x2. The aim is to 
maximize F41 and F42 subject to the given 
constraint. The functions and their coding 
characteristics are presented in Table 1. 

Table 1: Mathematical test functions 

Function Description Constraints 
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4.2   Test Results for the Analytical Functions 

Test results on functions F1 and F2 are presented 
in Tables 2 and 3, where the predicted optimum 
parameters and corresponding function values are 
compared with the actual optimum values. In 
these tests, binary coding of the genetic string was 
used and the crossover probability of 1.0 and 
mutation probability of 0.001 were selected. For 
test function F1, five optimization runs, listed as 
Test (a) in Table 2 were initially carried out using 
a population size of 100, and evolution over 200 
generations. The coding precision of the variables 
was set at 0.1. The two test runs listed as Test (b) 
were obtained using a parameter coding precision 

of 0.01 and evolution over 500 generations. Fig 3 
shows the results in the parameter plane where the 
initial population, generation 0, is compared with 
generation 100. Fig. 4 plots population averages for 
generation 0 up to generation 100 to show the 
convergence of the solution. 
 
For function F2, five optimization runs, listed as Test 
(a) in Table 3, were initially carried out using a 
population size of 100, and evolution over 500 
generations. The coding precision of the variables 
was set at 0.01. The five test runs listed as Test (b) 
were obtained using a coding precision of 0.001 and 
evolution over 500 generations. Fig. 5 shows the 
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results in the parameter plane where population at 
the start of the search process, generation 0, is 
compared with generation 100. Fig. 6 shows the 
convergence towards the solution for function F2. 
Fig. 7 shows the initial population search points 
randomly selected at generation 0 for function F3. 
It also illustrates the sketch of the function in the 
solution plane. The multi-objective algorithm 
results after 100 generations are presented in Fig. 

8. It can be observed that the algorithm has managed 
to identify the Pareto optimal front of non-dominated 
points. Table 4 shows the results of Pareto optimal 
front of non-dominated solution returned by the 
multi-objective algorithm when it was tested on 
function F4. The results compare very well with the 
results quoted by Roy and Wallenius (1992), and 
Donne and Tilley (1995). 

 
Table 2: Comparison of predicted versus actual minimum for function F1 

Test Run 
No. 

Random 
Seed 

x1 x2 x3 F1 D(x) 

(a) 1 .30000E+00  .40315E-01 .40315E-01 -.40315E-01 .48759E-02 .99994E+00

2 .76667E+00 -.40315E-01 -.40315E-01 -.40315E-01 .48759E-02 .99994E+00

3 .50000E-01 -.40315E-01 -.40315E-01 -.40315E-01 .48759E-02 .99994E+00

4 .18333E+00 -.40315E-01 -.40315E-01 -.40315E-01 .48759E-02 .99994E+00

5 .85000E+00  .40315E-01 .40315E-01 -.40315E-01 .48759E-02 .99994E+00

(b) 1 .21667E+00 -.75037E-02 .25012E-02 -.25012E-02 .68817E-04 .10000E+01

2 .40000E+00 -.32516E-01 .27513E-01 -.75037E-02 .18706E-02 .99998E+00

Actual 0.0 0.0 0.0 0.0 1.0

 

Table 3: Comparison of predicted versus actual minimum for function F2 

Test Run No. Random Seed x1 x2 F2 D(x) 

(a) 1 .23333E+00  .10300E+01 .10621E+01 .10330E-02 .10000E+01

2 .88333E+00 .94184E+01 .88573E+01 .35600E-02 .10000E+01

3 .33333E-01 .10300E+01 .10781E+01 .14827E-02 .10000E+01

4 .41667E+00 .11422E+01 .13025E+01 .20691E-01 .10000E+01

5 .56667E+00 .11262E+01 .12705E+01 .16391E-01 .10000E+01

(b) 1 .76667E+00 .10000E+01 .99974E+00 .65496E-05 .10000E+01

2 .31667E+00 .10000E+01 .10007E+01 .55402E-04 .10000E+01

3 .53333E+00 .10000E+01 .10007E+01 .55402E-04 .10000E+01

4 .50000E+00 .10000E+01 .99974E+00 .65496E-05 .10000E+01

5 .71667E+00 .10000E+01 .99974E+00 .65496E-05 .10000E+01

Actual 1.0 1.0 0.0 1.0

  

 
 

Fig. 3: Comparison of generation 0 versus generation 100 results for function F1 
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Fig 4: Progress towards convergence for generation average for function F1 

 

 
Fig. 5: Comparison of generation 0 versus generation 100 results for function F2 

 

 
Fig 6: Progress towards convergence for generation average for function F2 
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Fig. 7: Generation 0 results showing sketch of function F3 in the solution plane 

 
Fig 8: Pareto optimal front, function F3, identified by the multi-objective algorithm 

 

Table 4: Comparison of best results on function F4 using different methods 

 x1 x2 F41 F42 F41+F42 

Roy et al 1.0120 0.6990 1.7110 -0.3130 1.398 

Donne at al 4.0250 1.6140 5.6390 -2.4110 3.2280 

Current method 4.0840 1.6140 5.6980 -2.4700 3.2280 

 
5.0 CONCLUSION 

 
A genetic algorithm based search strategy for 
numerical optimisation of multi-domain and multi-
objective problems has been presented and tested 
on analytical functions with successful results. The 
multi-objective algorithm employing the concept of 
Pareto optimality has been shown to be effective in 
solving multi-objective optimisation problems. The 
approach offers advantage over techniques such as 
weighted sum of responses, which require prior 
knowledge about the interrelationship between the 
different parameters. The ability of the genetic 
algorithm to handle multi-objective and multi-

domain problems makes it most suited to numerical 
optimization of internal combustion engine design. 
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NOMENCLATURE 

A Binary string (chromosome) 
ai Bit or gene of a binary string (may have a 

value of 1 or 0) 
a, b Coefficients of linear relationship between 

raw and scaled fitness functions 
Cmax Coefficient representing the largest value in 

the current population 
Cmin Coefficient representing the smallest value in 

current population 
D   Distance of a solution from an ideal (utopian) 

solution 
δ Resolution 
dij     Desirability of solution i with respect to 

response j   
F Objective function  
F* Fitness function 
Fs

* Scaled fitness function 
Ф      Penalty function 
g   Function representing inequality constraint 
h    Function representing equality constraint 
L Length of a binary string 
n   Total number of violated constraints 
nf       Total number of objective functions 
ri    Penalty coefficient for constraint i. 
ni   Absolute amount of violation i 
x  An integer representing design variable 
Umin, Umax Limits of strings A after decoding 

and mapping into specified interval 
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