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ABSTRACT

Multiplicative and additive noises are often introduced in image signals during the image
acquisition process and result into degradation of image features. The work done by
Perona and Malik in 1990 and its modified versions revolutionized the way through which
noises or speckles are removed. The Perona-Malik model requires tuning of the
regularization parameter to control and prevent staircase artifacts in restored images. The
current manual tuning is a challenging and time consuming practice when a long queue of
images is registered for processing. Attempt to automate the regularization parameter
appeared in Perona-Malik model with self-adjusting shape-defining constant. Although
both multiplicative and additive noise based automated regularizations were presented, the
paper stayed silent on matters concerning the automation method that fits with speckle
reduction. This paper therefore, presents a comparative analysis of additive and
multiplicative noise based automated regularizations. Simulation results and paired
samples T-tests reveal that the multiplicative noise based automation outperforms the
additive noise based automation for small speckle variances. However, the two automation
methods do not significantly differ when large speckle variances are assumed.

Keywords: Additive Noise, Image Processing, Multiplicative Noise, Non-Linear Diffusion,
Regularization.

INTRODUCTION

In image acquisition process, coherent or
in-phase waves are usually projected
towards the target object. Depending on
imagery mechanisms, different types of
waves are used in capturing the image. For
example, coherent radiation of micro
electromagnetic waves is used in synthetic
aperture radar imaging, high energy
electromagnetic waves are used in X-ray
imaging, coherent light waves are used in
laser imaging, and acoustic or sound
waves are used in ultrasound imaging
(Raney, 1998; Huang et al., 2009; Liu et
al., 2013; Bharathi et al., 2014; Adabi et
al., 2017; Kessy et al., 2017a). When the

transmitted waves reach the target object,
they are reflected back to an active sensor
for image reconstruction (Chen et al.,
2019). Due to the variation and in
homogeneity of object characteristics and
dimensions, these waves are often back
scattered into multipath components that
travel different distances to reach the
sensor location. Most often, the back
scattered waves interfere constructively or
destructively generating speckles
characterized by black and light spots on
images (Kessy et al., 2017a). Speckles
significantly undermine the quality and
usefulness of images because they corrupt
and hide textures and edges that are crucial
for accurate assessment of the captured
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scene or extraction and recognition of
features and patterns from images
(Meenakshi and Punitham, 2011).

Attempts to generate speckle free images
came up with different type of filters
whereby the image pixel is replaced by an
estimated value. During the emerging age
of image processing, spatial or linear
filters were proposed to approximate
pixels’ values based on local statistics of
the image. These filters include, but not
limited to, the Frost filter that replaces the
central pixel by a weighted sum of
neighboring pixels, Lee and Wiener filters
that smoothen the image on variance basis,
and Gamma Map filter that estimates the
pixel value based on Gamma estimation of
contrast ratios (Mansourpour et al., 2000;
Chopra and Anand, 2014; Jaybhay and
Shastri, 2015). Despite the merits of linear
filters in generating speckle free images,
they are associated with high degree of
blurs and distortions of textures and edges
(Jaybhay and Shastri, 2015).

To address this weakness of linear filters,
Perona and Malik proposed a nonlinear
diffusion filter to smoothen internal
regions of the image while fleeing regions
where sharp contrast variations or edges
are detected (Perona and Malik, 1990).
The Perona-Malik model significantly
attracted scholars’ attention due to its edge
preservation capabilities. This attraction is
characterized by several modifications of
the Perona-Malik model that are published
in different journals (Guo et al., 2012;
Kessy et al., 2017a; Kessy et al., 2017b;
Maiseli et al., 2018). These works are
establishing stable and accurate models
that deal with different noise variants and
staircase artifacts caused by the ill-posed
aspect associated with the partial
differentiation applied in the Perona-Malik
kernel (Liu et al., 2013; Jain and Ray,
2019; Yao et al., 2019). In general, the
Perona-Malik model is made of a diffusion
kernel functional that approximates the
pixel value and the regularization term,

which has been added to control the ill-
posed aspect of the model and prevents
staircase artifacts in the despeckled image.

The classical regularization requires
manual tuning of the Lagrange multiplier
or regularization parameter. This manual
tuning consumes time and is harmful in
domains that operate under high
workload and high-level of accuracy
(Maiseli et al., 2018). The regularization
parameter should be correctly chosen so
that a proper image can be recovered (Liu
et al., 2013). The study that automates the
regularization parameter is presented in
Perona-Malik model with self-adjusting
shape-defining constant whereby
automation analysis based on both
additive and multiplicative noise models
came up with two distinct automated
regularization parameter formulae
(Maiseli et al., 2018). However, authors
did not present a formulation that fits
with speckle granularities and proprieties.
Therefore, this paper presents a
comparative analysis of multiplicative
and additive noise based automated
regularizations that establish a general
agreement for automated regularization in
speckles reduction process.

MATERIALS AND METHODS

Modified Perona-Malik Models

The Perona-Malik filter was modelled
based on the concept of anisotropic
diffusion as presented by Fick’s law
(Perona and Malik, 1990; Paul and
Laurila, 2014). The idea behind the
modelling was to smoothen internal
regions of the image while fleeing
regions with sharp contrast variations or
edges (Perona and Malik, 1990; Maiseli
et al., 2018). The fleeing of regions was
achieved through adaptive diffusion
under assumption that stronger smoothing
is needed in areas with large diffusivity
value and vice versa. A high norm of the
gradient is measured in area with smaller
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diffusivity value, which predicts the
location of edges in an image and hence
no or less smoothing should be applied.
The Perona-Malik model incorporates the
diffusion Kernel functional that
approximates the pixel value and the
regularization term that controls the ill-
posed aspect of the model and prevents
staircase artifacts in the despeckled
image. Therefore, modifications of the

Perona-Malik model mainly focus on the
manipulation of either diffusion Kernel
functional or the regularization term.
Different evolution equations were
derived with convincing results
including, but not limited to, the
evolution equations in equations (1), (2),
(3) and (4) (Kessy et al., 2017a; Kessy et
al., 2017b; Maiseli et al., 2018).

……………………………………………………… (1)

……………………………………………...……… (2)

……………………………………………...…...……. (3)

…………………………………………...………….. (4)

………………..….. (5)

………. (6)

The function represents the speckle free
image, represents the noisy image,
denotes the divergence, denotes the
gradient, symbolizes the shape-defining
constant. Also, the supporting domain is
represented by in which captures
the despeckled image in spatial and time
domain.

Automation of the Regularization
Parameter

Lagrange multiplier or regularization
parameter enables the adjustment between
the despeckled image and the noisy image
during a specific iteration. This parameter
is tuned to control and prevent staircase
artifacts in the restored image and
therefore, different images may require
different values. The work done by Maiseli
et al. (2018) proposed an automated
regularization parameter based on the local
information of an image. Authors assumed
an optimal solution for the evolution

equation (1) such that for ,

and the resulting equation was multiplied
by , as given by equation (7).

Equation (7) was then modified by
assuming that the noise variance is known
so as to obtain equation (8) or the
automated value of 
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………………………………………… (7)

……………………...…………............... (8)

where represents the variance of a zero
mean additive noise as given by equations
(10). It should be noted that equation (9)
represents the mean value formulation of
the additive noise.

……………………. (9)

………….. (10)

Accordingly, equation (2) was used to
derive the automated parameter , as
given by equation (11).

……………………………………… (11)

where represents the variance of the
multiplicative noise as given by equation
(13). Equation (12) provides the mean
value formulation of the multiplicative
noise.

…………..……. (12)

…….. (13)

RESULTS AND DISCUSSION

The additive and multiplicative noise
based automated regularization parameters
were incorporated subsequently in all the
evolution equations presented in equations
(1), (2), (3) and (4). Simulations were run
for the peak signal to noise ratio (PSNR)
and the structure similarity index (SSIM)
to measure the noise removal and the
feature preservation capabilities,
respectively (Kessy et al., 2017a; Maiseli
et al., 2018). The shape-defining constant
(K) was set to 1.96 where1000 iterations
were performed for each noise level. Also,
a 300 by 300-pixel size synthetic image
was used in simulations. This image was
used for all the methods based on the fact
that the paired samples T-test imposes the

evaluation of objects under the same
condition.

Table 1 presents PSNR values obtained
from several experiments using MATLAB
image processing tool box with small
scaled noise variances. Pair 1, Pair 2, Pair
3 and Pair 4 represent PSNR variations
with noise variances for equations (1), (2),
(3) and (4) automated with the additive
noise based automation (AA) and
multiplicative noise based automation
(MA). To perform comparisons for further
understating of the noise removal
capability of the automation methods,
statistical summaries were established as
in Table 2. It was observed that the mean
of MA leads in all the table entries and
hence it deserves superior considerations.
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Table 1: PSNR for small scaled speckle variances

Small
scaled

variance
PSNR

Pair 1 Pair 2 Pair 3 Pair 4 SumPSNR
AA MA AA MA AA MA AA MA AA MA

0.1 18.5425 22.6123 22.0450 30.1008 21.0624 30.4488 18.9008 27.6904 80.55074 110.8524
0.2 18.9202 22.8841 30.2450 30.1709 24.2719 30.3520 30.1239 29.7461 103.5610 113.1532

0.3 20.5696 30.2261 25.4945 30.0594 19.6592 29.4966 29.5660 29.3836 95.28932 119.1658
0.4 20.402 30.1302 29.6966 30.2961 28.6797 30.1043 23.2274 29.6318 102.0058 120.1625
0.5 18.5455 30.1162 29.0758 29.9763 30.7103 29.7688 29.4414 29.1111 107.7732 118.9724

0.6 20.0194 27.9052 30.1403 30.2454 31.0339 30.5161 29.9070 29.5448 111.1007 118.2116
0.7 21.2470 30.0090 30.0784 30.0631 28.9393 29.9165 24.1295 29.4717 104.3942 119.4604

0.8 18.4676 30.0649 30.1816 30.2190 21.1227 29.5382 26.4952 29.4213 96.26721 119.2435

0.9 21.3050 30.0867 30.0583 30.0620 28.0787 30.1121 26.1094 29.1719 105.5514 119.4328
1 22.0387 30.1865 30.1034 30.2197 30.6818 29.9381 29.9743 29.4846 112.7983 119.8290

Table 2: Paired samples statistics of PSNR for small scaled speckle variances

Automated Pair Mean Std. Deviation
Pair 1 MA 28.4221 3.0701

AA 20.0057 1.3188
Pair 2 MA 30.1412 0.1031

AA 28.7118 2.7501
Pair 3 MA 30.0191 0.3562

AA 26.4240 4.4615
Pair 4 MA 29.2657 0.5855

AA 26.7875 3.7751
Sum SSIM MA 117.8484 3.1702

AA 101.9292 9.3776

Furthermore, to establish a proper
conclusion about this outperformance,
paired samples T-tests were used to
confirm whether the observed means
significantly differ. From Table 3 in Pair 1
entry, the Paired samples T-test t (9) =
10.0870 reveals that the means 28.4221 ±
3.0701 and 20.0057 ± 1.3188 significantly
differ at 95% confidence interval of
difference with a value or Sig.(2-tailed)
of 0.000 < 0.05. This observation validates
the outperformance of the multiplicative
noise based automation over the additive
noise based automation when the evolution
equation (1) is assumed. The

outperformance was also validated for
evolution equation (3) and evaluation
equation (4) giving values of 0.0290 and
0.0470, respectively, which are less than
0.05. Unlike this three entries, the means
for evolution equation (2) do not
significantly differ because the value
was 0.131 > 0.05. The general agreement
is that the multiplicative noise based
automation should be considered because,
despite its high mean values, the sum
PSNR’s means significantly differ with

value of 0.0000 < 0.05.
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Table 3: Paired samples tests of PSNR for small scaled speckle variances

Paired Differences

t
Sig.

(2-tailed)Mean
Std.

Deviation

95% Confidence
Interval of the

Difference

Lower Upper
Pair 1 MA - AA 8.4163 2.6384 6.5289 10.3037 10.0870 0.0000

Pair 2 MA - AA 1.4293 2.7183 -0.5152 3.3739 1.6630 0.1310

Pair  3 MA - AA 3.5951 4.3747 0.4656 6.7246 2.5990 0.0290

Pair 4 MA - AA 2.4782 3.3992 0.0465 4.9099 2.3050 0.0470

Sum PSNR MA – AA 15.9191 7.8085 10.3332 21.5050 6.4470 0.0000

The two automation methods behaved
differently depending on the considered
noise variance. Table 4 presents the raw
data of PSNR obtained when large scaled
noise variances were assumed. Also,
statistical analysis was done to establish

fair comparisons between the PSNRs for
additive and multiplicative based
automation methods when an image with
large scaled speckle variances is
assumed, as in Tables 5 and 6.

Table 4: PSNR for large scaled speckle variances

Large
scaled

variances

PSNR

Pair 1 Pair 2 Pair 3 Pair 4 Sum PSNR

AA MA AA MA AA MA AA MA AA MA

10 27.0330 30.1844 30.2344 30.2496 29.7193 30.0672 29.0594 29.2341 116.0462 119.7354

20 20.6301 30.2413 30.0632 30.0637 29.5610 30.2809 30.0694 29.5148 110.3239 120.1009

30 30.2227 30.0640 30.2154 30.2187 30.2977 30.1583 29.4830 29.4170 120.2189 119.8582

40 27.3743 30.2173 30.0657 30.0633 29.833 30.0263 29.7131 29.3120 116.9862 119.6191

50 30.0132 30.0643 30.2258 30.2262 29.9713 30.1898 28.7070 29.1189 118.9175 119.5993

60 28.0792 30.2191 30.2719 30.2699 29.9109 30.0761 29.5003 29.3179 117.7624 119.8832

70 30.3061 30.2139 30.2492 30.2505 30.2476 30.1007 29.3327 29.5043 120.1357 120.0695

80 30.3305 30.2502 30.1721 30.1687 30.2563 30.0607 29.27084 29.3134 120.0298 119.7931

90 30.4348 30.4207 30.0252 30.0251 30.1577 30.4040 29.2433 29.3128 119.8611 120.1627

100 30.0383 30.0256 30.4205 30.4221 30.2574 30.3356 29.4211 29.3401 120.1375 120.1234

The same as for small scaled noise
variances, the multiplicative noise based
automation presents high mean values in
most of the entries for large scaled
variances as in Table 5. The application of
paired samples T-tests reveals that the
outperformance of the multiplicative noise
based automation is not significant for
large scaled variance under all the

evolution equations. This is because all
the values or Sig. (2-tailed) in Table 6
are not less than 0.05. For example,  Paired
samples T-test t(9) = 1.7990 reveals that
the means 30.1900 ± 0.1156 and 28.4462 ±
3.0456 do not significantly differ at 95%
confidence interval of difference with a

value or Sig.(2-tailed) of 0.1060 > 0.05.
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Table 5: Paired samples statistics of PSNR for large scaled speckle variances

Automated Pair Mean Std. Deviation
Pair 1 MA 30.1900 0.1156

AA 28.4462 3.0456
Pair 2 MA 30.1958 0.1196

AA 30.1943 0.1183
Pair 3 MA 30.0212 0.2604

AA 30.1958 0.1196
Pair 4 MA 29.3385 0.1184

AA 29.3800 0.3653
Sum SSIM MA 119.8945 0.2102

AA 118.0419 3.0963

Table 6: Paired samples tests of PSNR for large scaled speckle variances

Paired Differences

t
Sig.

(2-tailed)Mean
Std.

Deviation

95% Confidence Interval
of the Difference

Lower Upper

Pair 1 MA - AA 1.7438 3.0659 -0.4493 3.9371 1.7990 0.1060

Pair 2 MA - AA 0.0014 0.0052 -0.0023 0.0052 0.8690 0.4080

Pair 3 AA - MA -0.1745 0.2437 -0.3489 -0.0001 -2.2650 0.0500

Pair 4 MA - AA -0.0414 0.2851 -0.2454 0.1624 -0.4600 0.6560

Sum PSNR MA - AA 1.8525 3.1101 -0.3722 4.0774 1.8840 0.0920

The structure similarity index denoted as
SSIM, measures the edges or textures
recovery capability for several despeckling
methods. The higher the SSIM value the
better the performance in recovering useful
features of the image. Like for the PSNR,
Table 7 presents the raw data of SSIM
obtained from several experiments in
which small scaled noise variances were
manipulated.

For comparisons purposes, statistical
summaries were established whereby it
was observed that the multiplicative noise
based automation (MA) presents higher
mean values compared to the additive
noise based automation, as in Table 8. The
same as for PSNR, paired samples T-tests

were used to establish a proper conclusion
about the difference between mean values
of SSIM for the two automation methods.
From Table 9 in Pair 1 and Pair 3 entries,
the outperformance of the multiplicative
based automation is validated by the T-
tests because the values of 0.000 and
0.0360 are less than 0.05. In contrast,

values of Pair 2 and 4 are greater than
0.05 and hence the differences are not
significant in these two cases. In light of
the high mean values in most of the entries
and the significance of difference in the
sum SSIM entry, the multiplicative noise
based automation should be used for more
texture and edges recovery when small
scaled variances are assumed.
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Table 7: SSIM for small scaled speckle variances

Small
scaled
variances

SSIM

Pair 1 Pair 2 Pair 3 Pair 4 Sum  SSIM
AA MA AA MA AA MA AA MA AA MA

0.1 0.1326 0.5623 0.4506 0.9512 0.8858 0.9514 0.2127 0.8835 1.6817 3.3484
0.2 0.1570 0.5722 0.9753 0.9518 0.6315 0.9519 0.8805 0.8849 2.6443 3.3608
0.3 0.2282 0.9650 0.7442 0.9508 0.6822 0.9509 0.8844 0.8843 2.5390 3.7511
0.4 0.2464 0.9852 0.9684 0.9584 0.9312 0.9522 0.8693 0.8846 3.0155 3.7805
0.5 0.1388 0.9852 0.8871 0.9512 0.9512 0.9511 0.8833 0.8833 2.8605 3.7709
0.6 0.2111 0.8154 0.9571 0.9511 0.9509 0.9510 0.8841 0.8844 3.0033 3.6019
0.7 0.3248 0.9849 0.9534 0.9510 0.9314 0.9508 0.8536 0.8847 3.0632 3.7715
0.8 0.0128 0.9522 0.9548 0.9509 0.7029 0.9513 0.8694 0.8851 2.5400 3.7395
0.9 0.3528 0.9528 0.9564 0.952 0.9127 0.9517 0.8624 0.8844 3.0843 3.7410
1 0.4068 0.9538 0.9526 0.9513 0.9463 0.9514 0.8766 0.8844 3.1824 3.7410

Table 8: Paired samples statistics of SSIM for small scaled speckle variances

Automated Pair Mean Std. Deviation
Pair 1 MA 0.8729 0.1685

AA 0.2211 0.1180
Pair 2 MA 0.9520 0.0022

AA 0.8800 0.1659
Pair 3 MA 0.9514 0.0004

AA 0.8526 0.1271
Pair 4 MA 0.8844 0.0005

AA 0.8077 0.2092
Sum SSIM MA 3.6607 0.1689

AA 2.7615 0.4451

In terms of SSIM, the two automation
methods also behaved differently on noise
variance basis. Table 10 presents the raw
data of SSIM obtained when large scaled
noise variances were assumed. Also, for
fair comparisons between the automation
methods, statistical analysis was used as in
Table 11 and 12. It was observed in Table
11 that the multiplicative noise based
automation presents high mean values in
most of the entries for large scaled
variances. To establish conclusions about

this outperformance, significance tests
were performed as in Table 12.

From Table 12, it was observed that all the
values represented by Sig.(2-tailed) are

greater than 0.05, which means that there
is no significant difference between the
results from multiplicative and additive
noise based automations. This aspect
indicates that any automation method can
be used when large scaled noise variances
are assumed.
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Table 9: Paired Samples Tests of SSIM for Small scaled speckle Variances

Paired Differences

t
Sig.

(2-tailed)Mean
Std.

Deviation

95% Confidence
Interval of the

Difference

Lower Upper
Pair 1 MA - AA 0.6517 0.1688 0.5309 0.7725 12.2060 .0000

Pair 2 MA - AA 0.0719 0.1654 -0.0463 0.1903 1.3760 .2020

Pair 3 MA – AA 0.0987 0.1272 0.0077 0.1897 2.4550 .0360

Pair 4 MA - AA 0.0767 0.2089 -0.0727 0.2262 1.1601 .2750

Sum SSIM MA - AA 0.8992 0.3543 0.6457 1.1527 8.0250 .0000

Table 10: SSIM for Large-scaled Speckle Variances

Large
scaled

variance

SSIM

Pair 1 Pair 2 Pair 3 Pair 4 Sum SSIM

AA MA AA MA AA MA AA MA AA MA

10 0.7485 0.9523 0.9506 0.9511 0.95203 0.9521 0.8846 0.8847 3.5358 3.7403

20 0.4621 0.9850 0.9510 0.9510 0.9518 0.9519 0.8848 0.8849 3.2497 3.7729

30 0.9787 0.9509 0.9507 0.9509 0.9514 0.9513 0.8844 0.8844 3.7653 3.7377

40 0.7822 0.9509 0.9520 0.9519 0.9506 0.9506 0.8830 0.8830 3.5678 3.7365

50 0.9638 0.9519 0.9514 0.9514 0.9525 0.9526 0.8836 0.8837 3.7514 3.7396

60 0.8356 0.9511 0.952218 0.9520 0.9514 0.9514 0.8843 0.8843 3.6236 3.73897

70 0.9582 0.9521 0.95147 0.9516 0.9515 0.9514 0.8850 0.8850 3.7461 3.7402

80 0.96 0.9516 0.951068 0.9509 0.9519 0.9519 0.8846 0.8846 3.7476 3.7391

90 0.9581 0.9522 0.950771 0.9506 0.9517 0.9518 0.8843 0.8843 3.7450 3.7390

100 0.9523 0.9508 0.952115 0.9521 0.9517 0.9518 0.8848 0.8848 3.7410 3.7395

Table 11: Paired Samples Statistics of SSIM for Large-scaled Speckle Variances

Automated Pair Mean Std. Deviation
Pair 1 MA 09548 0.0105

AA 0.8599 0.1633
Pair 2 MA 0.9514 0.0005

AA 0.9513 0.0005
Pair 3 MA 0.9517 0.0005

AA 0.9517 0.0005
Pair 4 MA 0.8844 0.0006

AA 0.8843 0.0006
Sum SSIM MA 3.7424 0.0107

AA 3.6473 0.1634
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Table 12: Paired Samples test of SSIM for Large-scaled Speckle Variances

Paired Differences

t
Sig.

(2-tailed)Mean
Std.

Deviation

95% Confidence Interval
of the Difference

Lower Upper
Pair 1 MA – AA 0.0949 0.1724 -0.0284 0.2183 1.7410 0.1160

Pair 2 MA – AA 0.0000 0.0001 -0.0000 0.0001 0.7230 0.4880

Pair 3 MA – AA 0.0000 0.0000 -0.0000 0.0000 1.7040 0.1230

Pair 4 MA – AA 0.0000 0.0000 -0.0000 .00005 1.9670 0.0810

Sum SSIM MA – AA 0.0950 0.1725 -0.0284 0.2184 1.7410 0.1160

CONCLUSIONS

This work has established a comparative
analysis of additive and multiplicative
noise based automated regularizations in
nonlinear diffusion image processing
based on four modified versions of the
Perona-Malik model. The simulation
results and paired samples T-tests
revealed that the multiplicative noise
based automation presents convincing
results compared to the additive noise
based automation for small speckle
variances while performances of the two
automation methods do not significantly
differ for large speckle variances. It
should be noted that the multiplicative
noise based automation stay quasi stable
after attaining the peak value and
therefore, it is recommended for speckle
reduction. The multiplicative and additive
noise variances are assumed known in
priori and that this is not the case in real
environment. Therefore, to fully automate
the regularization parameter, the noise
variance should be estimated based on
speckles distribution in the image. The
estimation of speckle noise variances
remains an open research problem for
future studies.
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