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ABSTRACT   

Markowitz model considers what is termed as standard portfolio 

optimization. The portfolio optimization problem is a problem 

which based on asset allocation and diversification for maximum 

return with minimum risk. Thus, the standard portfolio 

optimization problem happens when the constraints considered 

are budget and no-short selling. In reality however, portfolio 

optimization has realistic constraints to be incorporated such as 

holding sizes, cardinality and transaction cost. When realistic 

constraints are added into portfolio optimization problem, it 

becomes too complex to be solved by standard optimization 

methods which in this case turns to be an extended portfolio 

optimization problem. Markowitz solution and the standard 

methods like quadratic programming become inapplicable. With 

such limitation, heuristic methods are usually used to deal with 

this extended portfolio optimization problem. Therefore, this 

paper proposes a heuristic algorithm for the extended portfolio 

optimization problem. It is a hill climbing algorithm named Hill 

Climbing Simple (HC-S) which is then validated by solving the 

standard Markowitz model. In fact, the proposed algorithm is 

benchmarked with the quadratic programming (QP), which is a 

standard method. By benchmarking HC-S with QP, it showed 

that HC-S can attains similar accurate solutions. Also, HC-S 

demonstrated to be more effective and efficient than threshold 

accepting (TA), an established algorithm for portfolio 

optimization since HC-S find solutions with significant higher 

objective value and require less computing time as compared to 

standard methods.  
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INTRODUCTION 

Markowitz’s standard portfolio optimization 

model (Markowitz, 1959; Markowitz, 1952) 

is a mathematical framework for describing 

and assessing return and risk of a portfolio 

of assets, using returns, volatilities and 

correlations. Markowitz introduced what is 

known as the mean-variance principle, 

whereby future returns are regarded as 

random numbers and expected value (mean) 

of the returns E(r) and their variance (whose 

square root is called standard deviation/ 

risk) capture all the information about the 

expected outcome and the likelihood and 

range of deviations from it (Markowitz, 

1959; Markowitz, 1952). 

To solve the portfolio optimization problem 

means to find the portfolio weights i.e., how 

to distribute the initial wealth across the 

available assets in order to meet the 
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investor’s objectives and constraints 

(Maringer, 2008; Markowitz, 1959; 

Markowitz, 1952). The most important 

constraints are budget and return constraints 

since they characterize the main part of the 

portfolio problem (Di Tollo and Roli, 

2008). The return constraint is considered 

when the investor requires a certain level of 

profit from his investment with minimum 

risk. The budget constraint is also taken 

when the investor has to invest all the 

capital in the portfolio. However, return 

constraints can only be satisfied using a 

historical portfolio (Sharpe, 2000; Korn 

1997; Markowitz, 1959; Markowitz, 1952). 

Although the Markowitz model is a well-

defined optimization problem, there exists 

no general solution for the optimization 

problem, because of the non-negativity 

constraint on the asset weight. Though the 

Markowitz model cannot be solved 

analytically, numerical methods exist by 

which the model can be solved for a given 

set of parameters (Maringer, 2008 Winker, 

2001; Sharpe, 2000; Gilli and Këllezi, 

2000). The capacity of these traditional 

standard methods relies on strong 

assumptions and simplifications, which do 

not reflect the real market situations 

(Sharpe, 2000). For reliable results that 

reflect the constraints of the real market 

situations, alternative optimization 

techniques like heuristic algorithms are 

usually used to deal with the extended 

portfolio optimization problem. Lwin and 

Qu, (2013) proposed a hybrid heuristic 

algorithm for tackling real market 

constrained portfolio problem.   Mercangöz 

and Eroglu (2021) give the implementing 

steps of the GA heuristic to solve a portfolio 

optimization problem.  

Milhomen and Dantas (2020) did a 

comprehensive review of the exact and 

heuristic methods, used to solve the 

portfolio optimization problem. They found 

that, attention should be given to input 

parameters/data of optimization models for 

best optimization results. Doering et al 

(2019) reviewed the current state and future 

trends of the use of higher-level heuristics 

(metaheuristic) for portfolio optimization 

and risk management. Meanwhile, Silva et 

al. (2019) applied particle swarm heuristic 

approach to solve the multi-objective 

portfolio optimization problem. On the 

other hand, Meghwani and Thakur (2018) 

used multi-objective evolutionary 

algorithms to solve a tri-objective portfolio 

optimization model with risk, return and 

transaction cost as the objectives. Arriaga 

and Valenzuela-Rendó, (2012) proposed a 

simple hill climbing algorithm called 

steepest ascent hill climbing algorithm 

which gave similar results as the complex 

evolutionary algorithm. Moreover, Kalayc 

et al. (2020) present an efficient hybrid 

metaheuristic algorithm that combines 

critical components from continuous ant 

colony optimization, artificial bee colony 

optimization and genetic algorithms for 

solving cardinality constrained portfolio 

optimization problem. Other researchers 

who applied heuristic algorithms to deal 

with portfolio problem are (Aranha and Iba 

2009; Maringer, 2008; Aranha and Iba  

2008;  Crama and Schyns, 2003; Schaerf, 

2002; Gilli and Këllezi, 2000). They apply 

heuristic optimization techniques like 

simulated annealing (Kirkpatrick et al, 

1983), local search (example tabu search 

(Schaerf, 2002)) and threshold accepting 

(Dueck and Scheuer, 1990). The most 

established heuristic algorithm used in 

extended portfolio optimization problem 

being threshold accepting (Gilli and 

Schumann, 2012; Gilli and Schumann, 

2010; Winker and Maringer, 2007; Winker, 

2001; Gilli and Këllezi, 2000; Dueck and 

Winker, 1992). Heuristic techniques seek to 

converge to the optimum in the course of a 

search, by repeatedly generating new 

solutions and testing them.  They are 

flexible and not so restricted to certain 

forms of constraints (Gilli and Winker, 

2008; Winker, 2001; Gilli and Këllezi, 

2000). Actually, heuristic techniques 

https://www.sciencedirect.com/topics/computer-science/metaheuristic-algorithm
https://www.sciencedirect.com/topics/engineering/ant-colony-optimization
https://www.sciencedirect.com/topics/engineering/ant-colony-optimization
https://www.sciencedirect.com/topics/computer-science/artificial-bee-colony
https://www.sciencedirect.com/topics/mathematics/genetic-algorithms
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operate on an iterative principle that 

includes stochastic elements in generating 

new candidate solutions and/or in deciding 

whether these replace their predecessors – 

while still incorporating some mechanism 

that prefers and encourages improvements 

(Maringer, 2008; Winker and Maringer, 

2007). The stopping criterion is usually a 

fixed number of steps or if the quality of the 

solution does not improve after a given or 

specified number of iteration or both 

(Winker and Maringer, 2007). 

In this paper, a heuristic algorithm is 

designed and investigated for portfolio 

optimization problem. The produced 

algorithm is tested to solve the standard 

portfolio optimization problem. Using the 

proposed algorithm, it is found to be more 

effective and efficient than threshold accepting 

(TA), an established algorithm for portfolio 

optimization since HC-S find solutions with 

significant higher objective value and require 

less computing time as compared to standard 

methods. 
 

METHODS AND MATERIALS 

Design of the proposed HC-S algorithm 

The designed hill-climbing algorithm is 

denoted as HC-S. Here HC stands for Hill 

Climbing, S stands for Simple search of 

neighbourhood. In each step, the algorithm 

attempts to improve a current solution by 

changing the relative weight of a single 

asset. ThP stands for Threshold 

Percentage. It refers to the size of a step in 

the proposed hill climbing method. In HC-

S, ThP was fixed to 0.5%. 

Considering return (Rp) of a portfolio and 

variance (2
p) of portfolio, the objective is 

to maximize the expected return (R), while 

diminishing incurred risk (), measured as 

standard deviation/variance in Markowitz 

(1952).  Equation (1) is maximized subject 

to expected return [equation (2)], portfolio 

return variance [equation (3)] and 

constraints [equations (4) and (5)]. 

 
2( ( ) (1 ) )p pMax E R  − −                  (1) 

( ) ( )p i ii
E R w E R=        (2) 

2

p i j i j iji j
w w   =        (3) 

where: 1ij =   for i=j. 

Constraints: 

1ii
w =                        (4) 

0 ≤ wi ≤ 1                   (5) 

The expected return of each asset is E(Ri), 

each asset variance is σi, and each asset 

weight is wi. 

Equation (1) reflects the trade-off between 

return (Rp) and risk (p) of portfolio. By 

solving the problem for different values of 

(0, 1): the efficient line/frontier is then 

identified. If =1 the model will search for 

the portfolio with highest possible return 

regardless of the variance. If =0, the 

minimum variance portfolio (MVP) will 

be identified. Higher values of   put more 

emphasis on portfolio’s expected return 

and less on its risk (Markowitz, 1952). 

Equation (4) and (5) are the constraints on 

the weights that they must not exceed 

certain bounds. 

 

Representation of solution 

A current solution for HC-S is represented 

by a vector of numbers (yi,…,yn). The 

element in position i represents the relative 

weight of the capital invested in stock i. 

The vector of numbers (yi,…,yn) is 

normalized to make sure that the weights 

in all the assets add up to 1. The 

percentage/weight to be invested in stock i 

is xi, as shown by equation (6). 

1

n

i i ii
x y y

=
=         (6) 

One advantage of using this representation 

is that the vector, y, may take any number 

without violation of budget constraint that 

the weights add up to 100%. 

 

Definition of neighbourhood for HC-S 

Figure 1 shows the hill climbing procedure 

for the proposed hill climbing algorithm 

HC-S. The procedure is for implementing 
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the definition of neighbourhood. A current 

solution has two neighbours or two 

possible candidate solutions. Elements of 

vector y in the range of 0 to 100 are 

randomly generated. The number of 

elements of y is equal to the number of 

asset/stocks. The randomly picked position 

in y is denoted as pos. ThP is a small 

percentage, which we refer to as threshold 

percentage, by which elements of y will be 

varied to get the next neighbour. The 

neighbourhood definition is to pick just 

one position (pos) in the current solution, 

y, at random. After picking the random 

position in the current solution, one 

neighbour is obtained by adding ThP to 

that position and another is obtained by 

subtracting ThP on the same position. This 

gives two neighbours (two possible 

candidate solutions) to be compared with 

the current solution, at random. The first 

better candidate solution (neighbour) to be 

picked is taken to be the current solution 

out of the two possible candidate solutions. 

If no better solution is found, another 

position, pos, in y is picked at random and 

the procedure is repeated. The procedure is 

repeated for a pre-set number of iterations, 

or until local maximum is obtained. In the 

procedure (Figure 1) mean returns of all 

stocks in column vector are denoted as 

retasset, given assets’ co-

variances/deviations matrix are denoted as 

dev, and   is the level of risk aversion. 

Figure 1 shows the block diagram with the 

summary of the neighbourhood definition 

of HC-S. 

 

 

 
Figure 1: Block diagram showing summary of the neighbourhood definition of HC-S. 

 

Below is the pseucode for procedure of 

HC-S (Function Move_to_neighbour) 

shows the Function to search for better 

neighbouring solution. It calculates the  

 

objective values of the two neighbouring 

solutions, compare with present solution 



C. John (2022), doi: 10.52339/tjet.v41i2.787 
 

Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 41 (No. 2), June 2022 145 

 

and returns the better neighbouring 

solution. 

 

 

Table 1: Pseudocode for hill climbing procedure of HC-S 

Procedure HC-C (ThP, , retasset, dev) 

Randomly generate initial current solution y 

Begin 

Repeat 

pick random position, (pos), in 

current solution y 

yplus = y 

          yminus = y   

 yplus(pos) =  yplus(pos)*(1 + ThP) 

yminus(pos) = yminus(pos)*(1 - ThP)    

yb4=y 

y = move_to_neighbour (y, yplus, 

yminus, , retasset, dev)   

Until halting criterion is met 

End. 

 

 

 

% Generate yplus from current solution% 

%Generate yminus from currentsolution% 

% Get a neighbour of current solution % 

% Get second neighbour of current solution % 

% Pick a better neighbour solution % 

 

% Stopping criterion;  

(no neighbour is better than current solution or pre-

set maximum number of iterations reached)% 

 

Table 2: Pseudocode of a function to search for better neighbouring solution 

Function Move_to_neighbour (y, yplus, 

yminus, , retasset, dev)  

Begin 

 
1

n

i i ii
x y y

=
=   

xplusi = yplusi/
1

n

ii
yplus

=   

xminusi = yminusi/
1

min
n

ii
y us

=   

xvalue = objectvalue (x, , retasset, dev, 

fitvalue)  

xplusvalue = objectvalue (xplus, , retasset, 

dev, fitvalue) 

xminusvalue = objectvalue (xminus, , 

retasset, dev, fitvalue)   

if xplusvalue>xvalue theny=yplus 

end if 

if xminusvalue>xvalue then y=yminus 

end if 

return y 

End. 

 

 

 

% Find weights, x, of all the assets n in portfolio% 

% Find weights, xplus, of all assets n % 

% Find weights, xminus, of all assets n% 

 

% Calculate objective value of portfolio x and denote 

as xvalue. % 

% Calculate objective value of portfolio xplus and 

denote as xplusvalue% 

 

%Calculate objective value of portfolio xminus and 

denote as xminusvalue. % 

% Return yplus if it is better than y. % 

 

% Return yminus if it is better than y. % 

 

 

Table 3: Pseudocode for calculating objective function value 

Function Objectvalue (x, , retasset, dev, 

fitvalue) 

 

Begin 

retpor t= scalar/dot product (retasset, x) 

  risk = x*dev*x’    

fitvalue = *retport – (1 - )*risk  

return fitvalue 

End 

 

%Calculate effective expected return of portfolio% 

% Calculate effective risk/variance of portfolio % 

%Calculate objective/objective value according to 

equation (1) above. % 
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The function to search for better 

neighbouring solution (Table 2) requires 

calculating of the objective values of the 

candidate solutions. Table 3 shows the 

function for calculating the 

objective/fitness value of the candidate 

solutions, from equation (1). It is used to 

measure the quality of a portfolio. 

 

RESULTS AND DISCUSSIONS 

Efficient frontier 

For every level of return, there is one 

portfolio that has the lowest possible risk 

and for every level of risk there is a 

portfolio that offers the highest return. 

This combination when plotted on a graph 

of the curve/line is known as the efficient 

frontier (Markowitz, 1959). The portfolios 

of this combination of return, risk values, 

plotted on the efficient frontier make up 

the set of efficient portfolios (Markowitz, 

1959). The standard Markowitz model, 

equations (1) to (5), was used to find an 

optimum portfolio of 230 assets. Figure 2 

is a plot of return of a portfolio (ret of 

porti) versus risk of a portfolio (risk of 

porti).  

 

Figure 2: Efficient frontier of 230 assets 

portfolio using HC-S 

The figure shows the efficient frontier 

obtained by tackling the Markowitz model 

using HC-S. It was applied on 230 assets 

portfolio. The 230 assets are from DAX 

stock exchange. The data used were daily 

returns over 1001 days. 
 

Benchmarking HC-S 

The algorithm is applied on a benchmark 

problem of solving standard Markowitz 

model as described in equations (1), (2), 

(3) under basic constraints (4) and (5). 

This problem has exact solution by 

standard methods. The standard method 

used for comparison is Quadratic 

Programming. Then the results from the 

algorithm proposed were compared with 

the results by Threshold Accepting. This is 

a well-established heuristic algorithm in 

portfolio optimization. The effectiveness, 

efficiency and reliability of the algorithm 

are further analysed. The assets and their 

return data used for applications in the 

algorithm are from DAX stock exchange. 

The data used were daily returns over 1001 

days. 

 

Benchmarking HC-S with Quadratic 

Programming method 

Here HC-S was benchmarked on the 

Markowitz model and was tested on 10 

assets portfolio. The results are compared 

with Quadratic Programming (QP) 

method, which is a standard method. Table 

4 shows the experimental results obtained 

on benchmarking HC-S with QP. They are 

the percentage values in a table and 

corresponding bar charts of the weights of 

10 assets portfolio. They were obtained by 

finding minimum variance portfolio 

(Markowitz model with  = 0 in 

expression (1)) by quadratic programming 

method and by the hill-climbing 

algorithms HC-S. Quadratic programming 

(QP) produces exact solution so results by 

HC-S are compaired with QP results to see 

how accurate the method is. The values 

show the relative weights (of total bugdet) 

to be invested in each asset. The results 

(weights) by algorithm HC-S is from the 
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best solution after 100 runs/iterations. 

Figure 3 shows the results of the 

algorithms HC-S in comparison to QP. 

The blue bars are that of Quadratic 

Programming (QP) and the red ones are of 

HC-S respectively. 
 

Table 4: Experimental results on benchmarking HC-S with Quadratic Programming 

algorithm Weight in each asset 

QP 0.0053    0.0802    0.1150    0.3191    0.1622    0.0599    0.0419    0.0067    0.0356  0.1741 

HC-S 0.0053    0.0801    0.1150    0.3193    0.1620    0.0601    0.0419    0.0067    0.0357  0.1739 
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Figure 3: Comparison of HC-S (red-bars) with Quadratic Programming (blue-bars) 

 

Table 4 and Figure 3 shows that solutions 

obtained by HC-S do not differ much from 

the exact solution by quadratic 

programming (QP). Variance/risk was 

calculated from the weights obtained by 

the methods QP and HC-S. The two 

methods attained the same low portfolio 

risk of 6.9751e-005. Attaining the same 

value of risk as QP depicts that the 

algorithm HC-S attains very accurate 

solutions. The similar height bars of HC-S 

compared to QP also depict that the 

algorithm HC-S give very accurate 

solutions. 

 

Benchmarking the Algorithm using 

Threshold Accepting 

HC-S was benchmarked on the Markowitz 

model, equation (1). They are tested on 

100 assets portfolio. The results are 

compared with Threshold Accepting, 

which is a well-established Hill Climbing 

algorithm in portfolio selection and 

optimization. The assets and their return 

data used for applications in the algorithms 

are from DAX stock exchange. The data 

used were daily returns over 1001 days. 

The following is the algorithm that is 

evaluated. 

• HC-S: Hill Climbing-Simple  

• HC-S (9e+5): HC-S with 9e+5 

iterations. 

Table 5 shows the experimental results on 

the portfolio optimization on 100 stocks 

from DAX stock exchange; taken after 100 

runs. The results show the values of 

objective function, number of functional 

evaluations required to reach final 

objective value, and average time in 

seconds for one run to converge to local 

maximum (final solution). The Best Final 

Objective value is the highest objective 

function value obtained in all 100 runs. 

Final objective values obtained in each run 

were recorded. Table 5 is the Mean, STD 

and Worst of Final objective values in all 

the 100 runs. The Mean and STD of 

Number of functional evaluations to reach 

final objective value, of the 100 runs, are 

also given. 
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Table 5: Experimental results on Portfolio optimization on 100 stocks, after 100 runs 

Algorithm Iterations  HC-S 

(9e+5) 

Threshold Accepting 

(9e+5) 

Best Final Objective value  0.000596 0.000588 

Final objective value Mean 

STD 

Worst 

0.000594 

6.46e-6 

0.000559 

0.000563 

3.46e-5 

7.2563e-5 

No. of functional evaluations to 

final objective value 

Mean 

STD 

2.7e+5 

6800 

3.0e+5 

1770 

Average time for 1 run (in sec.)  39.0 704.7 

 STD =Standard Deviation 

 

Discussion  

HC-S managed to attain higher best final 

objective value (0.000596) than Threshold 

Accepting (0.000588). The best final 

objective values are higher in HC-S 

showing that the method is more robust 

than Threshold Accepting as HC-S better 

escape local optima. To understand the 

significance of the difference in final 

objective value we look at the best final 

objective value of HC-S which is 

0.000596. This translates to a return of 

0.14% and a risk of 1.34% one day after 

investment, of the 100 stocks considered. 

The best final objective value of Threshold 

Accepting, 0.000588, translates to a return 

of 0.13% and a risk of 1.54% one day after 

investment. The following days could 

include compounded interest on the 

original capital. From the return and risk 

values, it is observed that you incur more 

risk but expect less return when you use 

the Threshold Accepting rather than HC-S 

to find an optimal portfolio.  

The mean of final objective value of HC-S 

is higher (0.000594) than that of Threshold 

Accepting (0.000563). The worst final 

objective of HC-S is a lot better 

(0.000559) than that of Threshold 

Accepting (7.2563e-5). The STD of mean 

of final objective value of HC-S (6.46e-6) 

is 10 times less that of Threshold 

Accepting (3.46e-5). The number of 

functional evaluations for HC-S was 2.7e5 

while that of Threshold Accepting was 

3.0e5. HC-S was faster as it required less 

number of functional evaluations. The 

STD of the number of functional 

evaluations of HC-S (6800) is more than 

that of Threshold Accepting (1770).  

Considering the time in seconds for one 

run to converge to best final objective 

value, Threshold Accepting (704.7), 

required more time than HC-S (39.0). This 

shows that it is far more expensive (time 

wise) to compute neighbourhood function 

of Threshold Accepting than that of HC-S. 

A t-test was performed on final objective 

values and on the number of functional 

evaluations to final objective of the 100 

runs. Both outcomes displayed a rejection 

of the null hypothesis at the 5% (default 

value) significance level. The t-test was 

performed using Mat-lab (R2010a). 

Furthermore, to use Threshold Accepting, 

one has to first calculate and sort threshold 

sequences according to a certain problem. 

These are the sequences by which poor 

solutions will be accepted to avoid being 

trapped in a local optimum. The process 

makes Threshold Accepting quite 

cumbersome. HC-S was tested on the 

Markowitz model; in finding weights for 

100 stocks in portfolio optimization, where 

a budget and return constraints are 

imposed. Results demonstrate that HC-S 
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manages to find significantly better 

solutions than Threshold Accepting, an 

established algorithm for portfolio 

optimization. Table 6 summarises the 

benchmarking results of the algorithm. 

 

Table 6: Benchmarking HC-S with T.A. 

 

CONCLUSIONS AND 

RECOMMENDATION 

A heuristic algorithm (HC-S) has been 

proposed, its effectiveness and efficiency 

for the portfolio optimization problem 

demonstrated. The algorithm produced 

attained promising results for portfolio 

optimization. HC-S was used to tackle the 

portfolio optimization problem, of the 

standard Markowitz model, where a 

budget constraint is imposed and no short-

selling is permitted. HC-S.  Benchmarking 

with Quadratic programming (QP) showed 

that HC-S attains accurate solutions. Also, 

HC-S has been demonstrated to be more 

effective and efficient than Threshold 

Accepting (TA), an established algorithm 

for portfolio optimization since HC-S find 

solutions with significantly higher 

objective value and require less computing 

time. It is recommended that, realistic, 

non-linear constraints like cardinality, 

maximum holding size, and minimum 

holding size, transaction costs, and 

regulations should be incorporated in the 

proposed hill climbing algorithm to solve 

the extended portfolio optimization 

problem. 
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