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ABSTRACT  

Stand-alone photovoltaic systems (SAPV) are often used in remote 

areas where access to grid electricity is limited. This system depends 

on solar energy. However, Photovoltaic (PV) systems need a greater 

initial investment than conventional sources of energy, and their 

effectiveness is reliant on a number of environmental conditions such 

as the unpredictable solar radiation. One step in reducing the 

investment cost of a PV system is determining the optimal size of solar 

PV components that minimize costs. This paper presents a Particle 

Swarm based optimization tool for sizing Stand-alone PV systems. The 

optimization tool selects the optimal Levelized Cost of Energy (LCOE) 

of the PV system during its entire lifespan while maintaining its 

reliability. The Particle Swarm Algorithm was implemented in order to 

solve the optimization problem. The Loss of Power Supply Probability 

(LSPS) is considered as the reliability index for this optimization. A 

design example in Serengeti, Tanzania is used to validate the proposed 

method. With an average daily load consumption of 94.3kWh, an 

optimal size of 30kW of Solar PV, 82kWh of Li-ion battery and 13kW 

of inverter was obtained at a LCOE of 0.22114 $/kWh. The Power 

simulation for this system was also carried out based on the 

mathematical models. The proposed method is investigated by 

simulation with several meteorological data, and the effectiveness is 

validated by using a similar tool which utilizes the mixed integer linear 

programming method. 
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INTRODUCTION 

Population growth results in an increase in 

electricity demand. The majority of this 

demand is satisfied by the usage of fossil 

fuels. According to (Agency, 2022), The 

production of oil, coal, and other fossil 

fuels accounts for 66% of the energy 

consumed by consumers. The downsides of 

fossil fuels are their scarcity and 

environmental issues, which are the 

primary source of global warming, acid 

rains, and air pollution. Renewable energy 

sources (RESs) are superior alternatives to 

fossil fuels (Kåberger, 2018). The benefits 

of RES include its environmental 

friendliness and global availability. 

Further, consumption does not diminish 

RES. Considering these benefits, several 

nations are being encouraged to use RES 

over fossil fuels (Algarni et al., 2023).  

Due to the fact that photovoltaic (PV) 

systems are a clean, ecologically friendly, 
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and secure energy source, their installation 

has played a vital role on a global scale 

(Tawalbeh et al., 2021). However, PV 

systems need a greater initial investment 

than conventional sources of energy, and 

their effectiveness is reliant on a various 

environmental factors, including the 

unpredictable nature of solar radiation and 

variable weather patterns that includes 

temperature fluctuations, and different 

forms of precipitation such as rain and 

snow (Mwakitalima et al., 2021). Lately, 

storage batteries and super capacitors have 

been increasingly utilized to enhance 

reliability of PV systems (Balducci et al., 

2021). 

Stand-alone photovoltaic systems are often 

used in remote areas where there is limited 

access to grid electricity (Idoniboyeobu et 

al., 2017). These systems consist of a solar 

PV system and a battery bank to enable 

power supply during low sun conditions. A 

major problem associated with 

Photovoltaic (PV) system consisting of a 

solar panel and a battery, is how to 

determine the optimal size of each system 

components to reliably meet load demands 

(Seedahmed et al., 2022). Sub optimal size 

would result in enormous investment costs 

that could be avoided, inefficient 

exploitation of energy sources, and 

decreased power reliability, all of which 

would severely affect the community that 

the system is intended to serve (Kapilan et 

al., 2022). 

The development of efficient and cost-

effective PV systems is crucial for the 

widespread adoption of renewable energy 

source. The optimal sizing of standalone 

PV systems remains a significant challenge 

in the field (Khatib & Muhsen, 2020). To 

this end, various approaches have been 

used in literature for optimal sizing. 

Gradient-based methods use differential 

calculus to find the best solutions for 

differentiable and continuous functions. 

These techniques are broadly categorized 

as Linear programming model (LPM), 

dynamic programming (DP), and nonlinear 

programming (NLP) and have been widely 

utilized in hybrid systems size (Mekontso 

et al., 2019). However the random nature of 

natural resources, the nonlinear change in 

power output from PV arrays, the choice of 

component type, orientation, and the 

economic model of the cost of energy 

produced by PV systems all make the 

optimization problem of these systems very 

difficult to be done by classical methods 

(Memon & Patel, 2021). This fact has led 

researchers to develop several approaches 

and strategies for optimizing PV systems, 

including heuristic methodologies. 

Heuristics are computational methods that 

repeatedly improve candidate solutions to 

find an optimal solution based on a given 

measure of quality. (Wang & Chen, 2013). 

Despite meta-heuristic methods being 

superior to traditional approaches, its usage 

in power system problems is still low 

(Memon & Patel, 2021).It has been 

observed that the Genetic Algorithm (GA), 

Particle Swarm Algorithm (PSO), and their 

derivatives have been the most prevalent 

meta-heuristics utilized in prior literature. 

Makhloufi determined the dimensions of 

the PV array and the storage battery for a 

PV lighting system application in Adrar, 

Algeria using a GA. The GA technique was 

compared to the worst month method and 

the Loss of Power Supply Probability (LPSP) 

method, both of which are traditional 

approaches. The results revealed that the 

GA technique outperformed the other two 

approaches (Makhloufi, 2015). 

The authors in (Yoza et al., 2014) used the 

Tabu Search (TS) approach to improve 

PV/battery combo in a Japanese smart 

house. By implementing the optimization 

issue in two portions, consideration was 

given to optimal appliance scheduling 

based on lowest operational cost and 

expansion planning based on least total 

system cost. The economic factor that was 

incorporated into the optimization function 

for the two halves of this study may not 

precisely correspond to the technical factor.  

The authors in (Aziz et al., 2014) proposed 

Evolutionary Programming (EP) for the 

sizing of the SAPV system in a rural 
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Malaysian village located in Tawau, Sabah. 

As a technical evaluation of the system, 

performance ratio (PR) was used. The 

classical evolutionary programming (CEP) 

and fast evolutionary programming (FEP) 

methods were used to size the SAPV 

system and were evaluated in comparison 

with the iterative-based sizing algorithm 

(ISA) with and without the Maximum 

Power Point Tracker (MPPT). However, 

monthly meteorological data, daily load 

demand, and a simple battery model were 

used, which could impact the generated 

power output. 

In the field of Computational Intelligence 

PSO is a relatively recent approach that has 

been employed with great success. PSO 

involves social engagement in problem 

solving where it imitates social behavior of 

the bird flocking and fish schooling (Amer 

et al., 2013). PSO algorithm was originally 

proposed by Kennedy and Eberhart in 

1995(Kennedy & Eberhart, 1995). In PSO, 

the coordinates of each particle represent a 

possible solution referred to as particles 

with a location and velocity vector. In each 

iteration, particles in a physical-

dimensional search space get closer to the 

optimal solution by displaying their 

velocity, the best solution they have 

attained at that time, and the best solution 

acquired by all particles 

Using PSO, Amer, Namaane and M'Sirdi, 

presented a basic strategy for optimum 

power generation from several sources in 

Hybrid Renewable Energy System (HRES) 

to lower the Levelized Cost of Energy 

(LCOE). In addressing such optimization 

problems, the PSO showed its heightened 

sensitivity and intensity (Amer et al., 

2013). On the other hand, Djidimbélé 

(Djidimbélé et al., 2022) proposed a 

method for estimating and reducing power 

losses of a Hybrid Photovoltaic and Wind 

System (HPWS) in a Radial Distribution 

Network (RDN) using PSO. The 

constraints on objective function allowed to 

size the photovoltaic generator, wind 

turbine, and total production cost. The 

proposed system configuration (PSC) 

increased voltage and minimized power 

losses in the radial network.  

In this paper, an optimization tool for sizing 

a SAPV is presented. The tool suggests the 

optimal PV, battery, and inverter sizes to 

satisfy a given power demand at the lowest 

possible cost. The cost minimization is 

implemented using the Particle Swarm 

Optimization (PSO). The performance of 

the presented SAPV system is evaluated by 

using 15min meteorological and typical 

load demand data. The rest of the paper is 

organized as follows. Section 2 presents the 

steps of modelling the SAPV systems, 

proposed optimal sizing algorithm using 

PSO and the design example. Section 3 

presents the results and discussions. 

Finally, Section 4 concludes the work and 

suggests future directions. 

 

METHODS AND MATERIALS  

Modelling of a Standalone PV System 

The stand-alone PV systems consists of the 

Solar PV panel, a storage device and its 

controller that regulates and controls the 

output from solar array in order to meet the 

load power requirements (Onar & Khaligh, 

2015). The storage device supplies the 

difference between PV panel power and 

load bus power. The PV panel supplies load 

power and charge the storage device when 

its power exceeds demand. Figure 1 shows 

a basic PV panel/battery architecture. 

 

PV Model 

Equation (1) is used to estimate the output 

power of a PV module based on the solar 

irradiation at time t (Vinod et al., 2018) 

𝑃𝑃𝑉(𝑡) = 𝑁𝑃𝑉 ∙ (
𝐺(𝑡)

𝐺𝑠𝑡𝑐
) ∙ ([1 + 𝛼(𝑇𝐶 −

𝑇𝑆𝑇𝐶)]                                                           (1) 

where, 𝑁𝑃𝑉 is the rated PV size, 𝐺(𝑡) is the 

total solar irradiance (W/m2) at given time 

instant t, 𝐺𝑠𝑡𝑐 is the solar irradiance (W/m2) 

at Standard Test Condition (STC) 

(1kW/m2), TC is the cell temperature, TSTC 

is the PV cell temperature at STC, α is the 

temperature coefficient of the PV cell. 
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Figure 1: Standalone PV System with battery (Onar & Khaligh, 2015). 

The temperature of the cell can be 

calculated in (2) (Vinod et al., 2018)  

𝑇𝐶 = 𝑇𝑎 + [
𝑇𝑂𝐶−20

800
] . 𝐺(𝑡)                                            (2) 

Ta is the ambient temperature in degrees 

Celsius, whereas 𝑇𝑂𝐶  is the nominal 

operating cell temperature. 

 

Battery Model 

The battery can both serve the load during 

a power loss (discharge) and store extra 

power (charge) when generated power 

exceeds load demand, depending on its 

state of charge (SOC) (Chen et al., 2020). 

Equations (3) and (4), respectively, can be 

used to calculate the battery's discharging 

and charging energies at time t (Traoré et 

al., 2018) . 

𝐸𝑏𝑑(𝑡) = 𝐸𝑏,(𝑡−1)  − [(𝑃𝐿(𝑡) − 𝑃𝑃𝑉(𝑡)) ∙

∆𝑡] /𝜂𝑑                                                  (3) 

𝐸𝑏𝑐(𝑡) = 𝐸𝑏,(𝑡−1)  + [(𝑃𝑃𝑉(𝑡) −

𝑃𝐿(𝑡))∆𝑡]. 𝜂𝑐                                          (4) 

Here 𝐸𝑏,𝑡−1  is the battery energy at 

time t−1 in (kWh),  𝐸𝑏𝑐   is the energy 

charged into the battery, 𝐸𝑏𝑑 is the energy 

discharged by the battery PPV is the power 

from PV, PL is the load demand 

power, ηc and ηd are the charging and 

discharging battery efficiency respectively.  
The battery’s state of charge is expressed as  

equation 5 (Traoré et al., 2018) . 

𝑆𝑂𝐶(𝑡+1) = 𝑆𝑂𝐶(𝑡) +
𝐸𝑏𝑐(𝑡).𝜂𝑐

𝐸𝑏(𝑡)
−

𝐸𝑏𝑑(𝑡)

𝐸𝑏(𝑡).𝜂𝑑
                                                            

                                                                (5) 

where 𝑆𝑂𝐶(𝑡)  and 𝑆𝑂𝐶𝑡+1 is the battery 

state of charge at time t and t+1 

respectively, 𝐸𝑏(𝑡)  is the battery energy 

which during charging is equal to 𝐸𝑏𝑐(𝑡) 

and during discharging is equal to 𝐸𝑏𝑑(𝑡). 

The battery management is designed such 

that at times when the power produced by 

the Solar PV is more than the power 

required, the excess energy is used to 

charge the battery. But at times when the 

power from the solar PV is insufficient to 

meet the load, the battery discharges to 

supply power to the load. The Battery’s 

Charge-Discharge energy management 

pseudo-code algorithm is shown in Figure 

2 below. 
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Figure 2: Operating strategy of the battery model.

Inverter model 

In single phase inverter, power output is 

what defines its efficiency. (Arefifar et al., 

2017). This is expressed by the following 

relationship 

𝑃𝑖𝑛𝑣 =
𝑃𝐿

𝜂𝑖𝑛𝑣
                                              (6) 

where 𝑃𝑖𝑛𝑣 is the Inverter Power, 𝑃𝐿 is the 

load demand and 𝜂𝑖𝑛𝑣  is the efficiency of 

the inverter. 

Reliability Model 

The power system enters a Loss of Power 

Supply  scenario when load demand 

exceeds PV and battery energy for hour t 

(𝑃𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑(𝑡) < 𝑃𝑛𝑒𝑒𝑑𝑒𝑑(𝑡) ), which is 

expressed from equation (7) (Traoré et al., 

2018), 

𝑃𝑙𝑜𝑠𝑠(𝑡) = 𝑃𝐿(𝑡) − [𝑃𝑃𝑉(𝑡) + 𝑃𝑏𝑑(𝑡)] ∙

𝜂𝑖𝑛𝑣                                                           (7) 

where 𝑃𝑏𝑑 is the power discharged by the 

battery. 

The LPSP is the term used to express the 

possibility of having a power outage during 

a given time period T. It is expressed as a 

percentage or a fraction. It is calculated by 

the following equation (Ganbasha & Ayop, 

2022) 

 𝐿𝑃𝑆𝑃 =
∑ 𝑃𝑙𝑜𝑠𝑠(𝑡)𝑇

𝑡=0

∑ 𝑃𝐿
𝑇
𝑡=0 (𝑡)

                               (8) 

where ∑ 𝑃𝐿
𝑇
𝑡=0 (𝑡) ≠ 0                                        

and 𝑃𝑙𝑜𝑠𝑠  is the difference between power 

needed and power supplied 

Optimization of Solar PV system 

Objective function and Design parameters  

In this section, the levelized Cost of Energy 

(LCOE) is considered as the objective 

function. The problem is formulated as 

follows:  

min{𝐹}                                                     (9)                                                                                       

where F is the LCOE which is the function 

of Total Annual Cost (TAC) expressed as 

equation (10): 

 𝐹 =
𝑇𝐴𝐶

∑ 𝐸𝐿(𝑡)𝑇
𝑡=1

                                                    (10) 

Here 𝐸𝐿 here represents the electrical load 

served by the PV system 

TAC includes the capital cost of equipment 

including PV panels, batteries and the 

inverter as well as the maintenance cost, 

and can be written as:  
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𝑇𝐴𝐶 = 𝑎𝐶𝑖𝑛 + 𝐶𝑚                                         (11)                
where  

𝐶𝑖𝑛 = 𝑁𝑝𝑣𝐶𝑃𝑉 + 𝐸𝑏𝐶𝑏 + 𝑃𝑖𝑛𝑣𝐶𝑖𝑛𝑣      (12) 

𝐶𝑚 = 𝑁𝑝𝑣𝐶𝑃𝑉,𝑚                                   (13) 

Here, 𝑁𝑃𝑉, 𝐸𝑏 and 𝑃𝑖𝑛𝑣 are rated PV size in 

kW, Battery storage capacity in kWh and 

Inverter size in kW respectively, while 𝐶𝑃𝑉, 

𝐶𝑏 and 𝐶𝑖𝑛𝑣 are unit cost of the PV panels, 

batteries, and the inverters, respectively. 

Also, 𝐶𝑃𝑉,𝑚 is the unit costs of maintenance 

for the PV panels and a  denotes the annual 

cost coefficient, defined in equation 14 

(Samuel, Mwaniki and Funsho Akorede, 

2019): 

𝑎 =
𝑖(1+𝑖)

𝑖(1+𝑖)𝑛−1

𝑛
                                           (14)                                                        

Here i is the interest rate and n is the system 

life period. The interest rate in Tanzania of 

5% was used based on (Mbowe et al., 2020) 

Some equipment in the SAPV system needs 

to be replaced several times during the 

project lifetime. Here, the battery lifetime 

considered here is of Lithium ion that has 

an average of 10 years at 10% Depth of 

Discharge (DOD) (Mallon et al., 2017). 

Using the single payment present value 

factor, the present value of battery 𝐶𝑏 can 

be expressed as follows: 

𝐶𝑏 = 𝑃𝑏 (1 +
1

(1+𝑖)10)                           (15) 

where 𝑃𝑏 is the price of the battery. Also, 

the lifetime of the inverter is considered 

here to be 10 years, so the present worth of 

inverter 𝐶𝑖𝑛𝑣  can be expressed using the 

single payment present value factor as 

follows: 

   𝐶𝑖𝑛𝑣 = 𝑃𝑖𝑛𝑣 (1 +
1

(1+𝑖)10)                  (16)                                                            

where 𝑃𝑖𝑛𝑣 is the inverter price. The rated 

PV size, battery storage capacity and 

inverter size are considered as design 

parameters. 

Constraints 

The following constraints must be met: 

• Reliability: 

  𝐿𝑃𝑆𝑃 ≤ 𝐿𝑃𝑆𝑃𝑠𝑒𝑡                                (17) 

• PV power limits: 

 𝑁𝑃𝑉 𝑚𝑖𝑛 ≤ 𝑁𝑃𝑉 ≤ 𝑁𝑃𝑉 𝑚𝑎𝑥                (18) 

• Battery stored energy: 

𝐸𝑏𝑚𝑖𝑛 ≤ 𝐸𝑏 ≤ 𝐸𝑏𝑚𝑎𝑥                           (19) 

where the maximum charge quantity of the 

battery bank takes on the value of the 

nominal capacity of the battery bank and 

the minimum charge quantity of the battery 

bank is obtained by maximum depth of 

discharge which can be calculated as: 

𝐸𝑏𝑚𝑖𝑛 = (1 − 𝐷𝑂𝐷) ∙ 𝐸𝑏𝑚𝑎𝑥               (20) 

For this optimization DOD was considered 

to be 0.1 which is equivalent to 10% for 

lithium ion batteries (Mallon et al., 2017). 

• Inverter number: 

  𝑁𝑖𝑛𝑣 ≥ 0.                                            (21) 

 

Proposed optimal sizing algorithm using 

PSO 

PSO is a powerful optimization technique 

inspired by the social behavior of birds and 

fish. In the context of this research, PSO 

was employed to optimize a SAPV system, 

aiming to find the optimal combination of  

PV size,battery size  and inverter capacity 

while satisfying various constraints, 

including the LPSP. 

The PSO algorithm begins with the 

initialization of a key parameters. These 

parameters includes the population Size 

( 𝑁𝑝𝑜𝑝 ), maximum Iterations ( Max_𝑖𝑡) , 

Convergence Tolerance ( 𝐶_𝑡 ), Inertia 

Weight (w), Personal learning coefficient 

( 𝐶1 ), Global Learning Coefficient ( 𝐶2 ). 

Particle positions are constrained within 

specified lower (𝐿𝐵) and upper (𝑈𝐵) bounds.  

The algorithm then generates an initial 

swarm of NPOP particles based on equation 

(22) below, each representing a potential 

solution.  

 𝑥𝑍 = 𝑅𝑎𝑛𝑑(𝐿𝐵, 𝑈𝐵)                             (22)               

where 𝑅𝑎𝑛𝑑  is a uniformly distributed 

random function 

These particles are assigned random 

positions and velocities within the defined 

bounds. The cost of each particle's position 

is calculated equation (10). Importantly, 
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constraints including LPSP are checked 

during initialization to ensure that the 

solutions are feasible from the outset. 

Particle velocities and positions are 

iteratively updated based on the equation 

(17) and equation (18) incorporating the 

inertia weight (w), personal learning 

coefficient ( 𝐶1 ), and global learning 

coefficient ( 𝐶2 ). The positions are 

constrained to stay within the specified 

bounds. Equation (17) and equation (18) 

are used to quantitatively represent the 

alteration of the particle's velocity and 

position respectively:(Amer et al., 2013): 

𝑣𝑖(𝑡) = 𝑤𝑣𝑖(𝑡 − 1) + 𝑐1𝑟1(𝑃1 − 𝑥1(𝑡 −
1) + 𝑐2𝑟2(𝐺 − 𝑥1(𝑡 − 1)                      (23) 

𝑥𝑖(𝑡) = 𝑥𝑖(𝑡 − 1) + 𝑣𝑖(𝑡)                        (24) 

where 𝑣𝑖(𝑡)  is the velocity of agent i at 

iteration t, 𝑥𝑖(𝑡) is the current location of 

agent i at iteration t, 𝑤  is the inertia weight, 

𝑟 is a uniformly distributed random number 

between 0 and 1, c is the weighting factor, 

𝑃1  is the  best  position  of  particle  i  

previously  visited  during  the  current  

stage and G is the global best position 

The algorithm continuously checks for 

convergence by monitoring the difference 

in cost between consecutive iterations. 

When the convergence criterion is met i.e. 

when the cost change is less than 

convergence tolerance for all particles, the 

optimization terminates early. 

Alternatively, if the maximum iteration 

limit is reached, the algorithm concludes. 
Upon termination, the PSO algorithm 

provides the optimal solution. The 

proposed algorithm is illustrated in Figure 

3 while system parameters are indicated in 

Table 1.

 

 

Figure 3: Flow chart of the proposed optimization algorithm. 

Table 1: System parameters defined and optimized using PSO algorithm 

Parameters Value 

Population Size (𝑁𝑝𝑜𝑝) 30 

Maximum Iterations (Max_𝑖𝑡) 100 

Convergence Tolerance (𝐶_𝑡) 1e-6 

Inertia Weight (w) 0.7288 

Personal learning coefficient (𝐶1), 1.4962 

Global Learning Coefficient (𝐶2) 1.4962 

 𝑁𝑃𝑉 𝑚𝑖𝑛  , 𝑁𝑃𝑉 𝑚𝑎𝑥 0,1000 

 𝐸𝑏𝑚𝑖𝑛 , 𝐸𝑏𝑚𝑎𝑥 0,2000 
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Cost Parameters 

The cost parameters used in this study 

were obtained from (Power Providers 

Tanzania, 2023) are highlighted in Table 

2. 

 

 
Table 1 Cost Parameter Used (Power Providers Tanzania, 2023) 

Component Capital cost (𝑪𝒊𝒏) O&M costs (𝑪𝒎) Component life 

(years) 

PV  $750/kW $15/kW/year 25 

Li-ion Battery  $455/kWh) $10/kW/year 10 

Inverter Capital cost $500/kW $10/kW/year 10 

Case Study based on Serengeti 

Meteorological data 

To demonstrate the capability of the 

optimization tool, two different installed 

standalone photovoltaic (PV) system with 

high and low irradiance were used. The first 

case study is a Camp hotel in the Serengeti 

region of Tanzania and the second is the 

camp hotel near Lepo national park in 

Gabon representing high and low 

irradiance respectively. In order to size 

using the proposed method, it is necessary 

to gather data pertaining to solar irradiation, 

ambient temperature, and load demand 

specific to the site. 

Solar Irradiance and Temperature 

Meteorological Data 

In order to model the power output from the 

Solar PV, the solar irradiation and 

temperature data is needed. Meteorological 

data, encompassing solar irradiance and 

ambient temperature, was obtained from 

the soDa website for the calendar year 2022. 

(SoDa, 2022). The solar irradiance are 

15min interval data for the whole 2022. 

This data was converted to hourly data in 

order to match with the collected hourly 

demand profile for the camp hotel. The 

hourly variation of solar radiation and 

ambient temperature for the two studied 

climates including Serengeti and Lepo in 

gabon representing high irradiance and low 

irradiance respectively are displayed in 

Figure 4 and Figure 5 respectively. The  

 

figures indicate that the solar irradiance in 

Serengeti reaches a maximum of 

1100W/m2 and has an average daily solar 

irradiance of 5763W/m2/day. In 

comparison, Lepo Camp Hotel experiences 

a peak solar irradiance of 910W/m2 and an 

average daily solar irradiance of 

3922W/m2/day, which is comparatively 

lower than Serengeti. The average ambient 

temperature for Serengeti is 23.2°C during 

the day compared to Gabon’s average 

temperature of 27.5°C during the day. 

 
Figure 4:  Hourly Solar irradiance and 

Temperature variation for Serengeti 
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 Figure 5:  Hourly Solar irradiance and 

Temperature variation for Lepo in Gabon.  

 

 

Load demand Data  

As input for optimization, the hourly load 

demand for the camp hotel in Serengeti in 

2022 was used. The same load profile was 

used for both case studies to compare the 

capabilities of the proposed optimization 

tool in obtaining an optimal solution for 

areas with both high and low irradiance. 

Figure 6 shows portion of the hourly load 

demand for a year, with a peak load of 

about 11.9 kW, an average load of about 4 

kW. The average energy in kWh per day is 

94.3 kWh/day. The night energy use is 

observed to be high compared to the day 

amounting to 66 kWh of the daily energy 

consumption. This is due to the lights being 

on during night and higher occupancy rate 

of the hotel camp during the night 

compared to day time. 

 

 

Figure 6: Hourly load demand profile of a camp hotel in Serengeti. 

 

RESULTS AND DISCUSSIONS 

Optimum Sizing Results using PSO 

Algorithm 

The PSO Algorithm was implemented in 

MATLAB R2020a on a computer with a 

2.40 GHz Intel Processor, 8GB RAM, and 

a 64-bit operating system. The PSO 

parameters were set according to Table 1, 

and the LSPS was set at 0.005. The optimal 

results for the LCOE and corresponding 

values of the design parameters for each 

case studied are provided in Table 2. These 

optimal sizes ensure that the PV system can 

meet 100% of the load. The LCOE of 

Serengeti is lower than that of Gabon due 

to the higher irradiance in Serengeti. It was 

observed that the required Solar PV size for 

Gabon is larger compared to Serengeti, 

while the battery sizes are almost similar. 

The inverter size is the same for both case 

studies since it depends only on the load 

and not the irradiance levels. 

 

Table 2: Optimal sizing results using PSO 

Case Study Solar PV Li-ion Battery Inverter LCOE 
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Serengeti 30 kW  82 kWh 13 kW 0.22114 $/kWh  

Gabon 47 kW 79 kWh 13 kW 0.24459 $/kWh 

The convergence rate of the PSO algorithm 

for the two case studies are shown in Figure 

7. From the convergence plot in Figure 7 

the optimization process terminated at 30th 

iteration despite number of iterations being 

set to 100 due to the fact that there was no 

more convergence in COE. 

 

 

Figure 7: Optimal Sizing Convergence graph. 

 
Figure 8: Hourly variation of the SPV system under best optimal configuration for 

Serengeti. 
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Power Distribution Simulation Output  

To obtain a good insight into the hourly 

variation of power supply by PV, load 

demand, and battery charging and 

discharging, variations of these parameters 

at the optimal configuration for the two 

studied cases are shown in Figures 8–9. 

Note that the variation is shown for the first 

three days of the year. 

 
Figure 9: Hourly variation of the SPV system under best optimal configuration for 

Gabon. 

 

During periods when the solar photovoltaic 

(PV) system generates an excess of power 

beyond the required load, the surplus 

energy is utilized to charge the battery until 

it reaches its maximum capacity of 100% 

state of charge. (iii) An area with low 

radiation requires a PV generator of larger 

size in order to supply the same load that 

may be supplied by a smaller PV generator 

in a region with high irradiance and (iv) 

The discharge curve is identical for both 

case studies, since they both utilized the 

same night profile. In this profile, the 

batteries were fully charged at the end of 

the day and began discharging as the sun set. 

Figure 8 illustrates the monthly average of 

photovoltaic (PV) electricity generated 

across the whole year. The data reveals that 

the month of July had the lowest power 

generation, whilst the month of March 

demonstrated the highest power output, 

which is attributed to the varying levels of 

solar radiation throughout these periods. 

 

Comparison and Validation 

To validate the proposed method, 

Renewable energy Integration and 

Optimization (REopt) tool was used to 

perform the same optimization task with 

the same meteorological data, load demand 

and system specifications. The REopt is a 

techno-economic decision support platform 

used by NREL researchers to optimize 

energy systems for buildings, campuses, 

communities, micro grids, and more 

(Simpkins et al., 2014). Formulated as a 

mixed integer linear program, REopt 

recommends an optimally sized mix of 

renewable and distributed energy, 

conventional generation, and energy 

storage technologies (Simpkins et al., 

2014). The results show very close 

similarities in output generated by both 

methods as shown in Table 3 below. 
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Table 3: Comparison of Optimal sizing results with REopt 

 

Parameter Proposed Algorithm REopt tool 

Solar PV  30 kW  37 kW 

Lion Battery 82 kWh 78 kWh 

Inverter  13kW 13kW 

COE 0.22114 $/kWh  0.201 $/kWh 

Total Cost 105,000 $ 93,000$ 

Computation time 36s 20s 

 

 

The proposed Algorithm shows a slight 

reduction in the PV size required, 

accompanied by an increase in the size 

storage capacity required. In terms of 

power output, the solar PV size obtained 

from the PSO algorithm is 19% lower than 

that obtained from REopt, the inverter size 

obtained from two methods were exactly 

the same, while battery size obtained from 

applying the PSO algorithm optimization 

showed a 3.7% increase in size when 

compared to the results obtained from 

REopt. 

Analysis in terms of computation time (in 

seconds), the optimal sizing using the 

proposed algorithm took 36 seconds while 

the same sizing took 26 seconds using the 

REopt optimizer, this shows a 10 seconds 

time increase. Moreover, analysis in terms 

of cost of energy, the Proposed Algorithm 

offered an overall cost of energy (COE) 

increase of about 0.02 $/kWh which 

represents a 9.8% increase, when compared 

to the cost of energy obtained from REopt. 

This is due to the fact REopt considers 30% 

incentives given as a percentage of capital 

costs. The federal percentage based 

incentive is treated as tax-based incentive 

to promote the use of renewable energy in 

America (Qadir et al., 2021). If 30% 

incentives would not be considered, then 

REopt would result to 0.241 $/kWh which 

is higher than LCOE for the Proposed 

method 

 

CONCLUSION 

This study proposed a PSO based optimal 

sizing tool for a Stand-alone PV system 

containing solar PV, Inverter and battery 

energy Storage. The Stand-alone PV 

system is designed to supply cost effective, 

reliable and clean power to load in which it 

is intended to serve. The LSPS is 

considered as reliability index for this 

optimization. A design example in 

Serengeti, Tanzania is done to show the 

capabilities of the proposed method. With 

an average daily load consumption of 

94.3kWh, an optimal size of 30kW of Solar 

PV, 82kWh of Li-ion battery and 13kW of 

inverter was obtained at a LCOE of 

0.221$/kWh. The Power simulation for this 

system was also carried out based on the 

mathematical models. The proposed 

method was investigated here in with a 

different meteorological data that has low 

average solar radiation to show the 

capabilities of this method in low irradiance 

regions. This investigation showed that the 

proposed method can be used to perform 

design task for any region and it is not site 

specific. To validate the proposed method, 

REopt tool was used to perform the same 

optimization task with the same 

meteorological data, load demand and 
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system specifications. The comparison 

showed very close similarities in output 

generated by both methods.  
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